cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345849 Numbers that are the sum of nine fourth powers in exactly seven ways.

This page as a plain text file.
%I A345849 #6 Jul 31 2021 21:28:31
%S A345849 6739,6854,6979,7029,7044,7094,7109,7269,7284,7844,7909,7939,8004,
%T A345849 8149,8194,8244,8309,8389,8434,8628,8739,8868,8979,9059,9189,9254,
%U A345849 9414,9509,9524,9668,9684,9734,9814,9829,9843,9844,9908,9909,9924,9989,10019,10038,10084
%N A345849 Numbers that are the sum of nine fourth powers in exactly seven ways.
%C A345849 Differs from A345591 at term 2 because 6804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4  = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4  = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4  = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4  = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4  = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
%H A345849 Sean A. Irvine, <a href="/A345849/b345849.txt">Table of n, a(n) for n = 1..10000</a>
%e A345849 6804 is a term because 6804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
%o A345849 (Python)
%o A345849 from itertools import combinations_with_replacement as cwr
%o A345849 from collections import defaultdict
%o A345849 keep = defaultdict(lambda: 0)
%o A345849 power_terms = [x**4 for x in range(1, 1000)]
%o A345849 for pos in cwr(power_terms, 9):
%o A345849     tot = sum(pos)
%o A345849     keep[tot] += 1
%o A345849     rets = sorted([k for k, v in keep.items() if v == 7])
%o A345849     for x in range(len(rets)):
%o A345849         print(rets[x])
%Y A345849 Cf. A345591, A345799, A345839, A345848, A345850, A345859, A346342.
%K A345849 nonn
%O A345849 1,1
%A A345849 _David Consiglio, Jr._, Jun 26 2021