cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345850 Numbers that are the sum of nine fourth powers in exactly eight ways.

This page as a plain text file.
%I A345850 #6 Jul 31 2021 21:28:34
%S A345850 6804,6869,8019,8084,8324,8499,8564,9044,9124,9219,9234,9284,9364,
%T A345850 9429,9474,9494,9604,9669,9749,9779,10148,10259,10293,10339,10388,
%U A345850 10453,10514,10579,10628,10644,10754,10789,11029,11059,11189,11204,11299,11363,11364,11379
%N A345850 Numbers that are the sum of nine fourth powers in exactly eight ways.
%C A345850 Differs from A345592 at term 5 because 8259 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4  = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4  = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4  = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4  = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4  = 2^4 + 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4  = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 9^4  = 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
%H A345850 Sean A. Irvine, <a href="/A345850/b345850.txt">Table of n, a(n) for n = 1..10000</a>
%e A345850 6869 is a term because 6869 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4.
%o A345850 (Python)
%o A345850 from itertools import combinations_with_replacement as cwr
%o A345850 from collections import defaultdict
%o A345850 keep = defaultdict(lambda: 0)
%o A345850 power_terms = [x**4 for x in range(1, 1000)]
%o A345850 for pos in cwr(power_terms, 9):
%o A345850     tot = sum(pos)
%o A345850     keep[tot] += 1
%o A345850     rets = sorted([k for k, v in keep.items() if v == 8])
%o A345850     for x in range(len(rets)):
%o A345850         print(rets[x])
%Y A345850 Cf. A345592, A345800, A345840, A345849, A345851, A345860, A346343.
%K A345850 nonn
%O A345850 1,1
%A A345850 _David Consiglio, Jr._, Jun 26 2021