cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345851 Numbers that are the sum of nine fourth powers in exactly nine ways.

This page as a plain text file.
%I A345851 #6 Jul 31 2021 21:28:38
%S A345851 8259,9539,10709,10819,10884,10949,10964,11124,11444,11573,11668,
%T A345851 11684,11924,12099,12164,12339,12404,12549,12773,12853,12918,13013,
%U A345851 13139,13204,13284,13379,13444,13509,13958,13988,14053,14213,14293,14308,14373,14403,14484
%N A345851 Numbers that are the sum of nine fourth powers in exactly nine ways.
%C A345851 Differs from A345593 at term 2 because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4  = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4  = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4  = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4  = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4  = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4  = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4  = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
%H A345851 Sean A. Irvine, <a href="/A345851/b345851.txt">Table of n, a(n) for n = 1..10000</a>
%e A345851 9299 is a term because 9299 = 1^4 + 1^4 + 1^4 + 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 7^4 + 8^4 = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 7^4 + 8^4 = 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 7^4 = 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 = 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 9^4 = 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4.
%o A345851 (Python)
%o A345851 from itertools import combinations_with_replacement as cwr
%o A345851 from collections import defaultdict
%o A345851 keep = defaultdict(lambda: 0)
%o A345851 power_terms = [x**4 for x in range(1, 1000)]
%o A345851 for pos in cwr(power_terms, 9):
%o A345851     tot = sum(pos)
%o A345851     keep[tot] += 1
%o A345851     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345851     for x in range(len(rets)):
%o A345851         print(rets[x])
%Y A345851 Cf. A345593, A345801, A345841, A345850, A345852, A345861, A346344.
%K A345851 nonn
%O A345851 1,1
%A A345851 _David Consiglio, Jr._, Jun 26 2021