cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345852 Numbers that are the sum of nine fourth powers in exactly ten ways.

This page as a plain text file.
%I A345852 #6 Jul 31 2021 21:28:42
%S A345852 9299,12708,12948,13269,13349,13524,13589,13764,13829,13893,14133,
%T A345852 14228,14468,14564,14869,14934,14964,15014,15094,15109,15174,15189,
%U A345852 15333,15428,15429,15524,15588,15604,15653,16214,16229,16469,16564,16644,16773,16883,16948
%N A345852 Numbers that are the sum of nine fourth powers in exactly ten ways.
%C A345852 Differs from A345594 at term 15 because 14804 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 8^4 + 8^4 + 9^4  = 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4  = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 11^4  = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4 + 8^4 + 8^4  = 1^4 + 1^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 + 8^4 + 8^4  = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 9^4 + 9^4  = 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 7^4 + 8^4 + 9^4  = 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 8^4 + 9^4  = 2^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4 + 7^4 + 9^4  = 2^4 + 6^4 + 6^4 + 6^4 + 6^4 + 7^4 + 7^4 + 7^4 + 7^4  = 3^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4 + 7^4 + 9^4.
%H A345852 Sean A. Irvine, <a href="/A345852/b345852.txt">Table of n, a(n) for n = 1..10000</a>
%e A345852 12708 is a term because 12708 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 10^4 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 10^4 = 1^4 + 1^4 + 1^4 + 5^4 + 6^4 + 6^4 + 6^4 + 8^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 5^4 + 6^4 + 8^4 + 9^4 = 1^4 + 2^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 9^4 = 1^4 + 3^4 + 4^4 + 5^4 + 6^4 + 6^4 + 6^4 + 6^4 + 9^4 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 10^4 = 2^4 + 2^4 + 3^4 + 3^4 + 5^4 + 6^4 + 7^4 + 8^4 + 8^4 = 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 7^4 + 7^4 + 7^4 + 8^4 = 3^4 + 4^4 + 4^4 + 5^4 + 6^4 + 6^4 + 7^4 + 7^4 + 8^4.
%o A345852 (Python)
%o A345852 from itertools import combinations_with_replacement as cwr
%o A345852 from collections import defaultdict
%o A345852 keep = defaultdict(lambda: 0)
%o A345852 power_terms = [x**4 for x in range(1, 1000)]
%o A345852 for pos in cwr(power_terms, 9):
%o A345852     tot = sum(pos)
%o A345852     keep[tot] += 1
%o A345852     rets = sorted([k for k, v in keep.items() if v == 10])
%o A345852     for x in range(len(rets)):
%o A345852         print(rets[x])
%Y A345852 Cf. A345594, A345802, A345842, A345851, A345862, A346345.
%K A345852 nonn
%O A345852 1,1
%A A345852 _David Consiglio, Jr._, Jun 26 2021