This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345853 #6 Jul 31 2021 20:00:03 %S A345853 10,25,40,55,70,85,90,100,105,115,120,130,135,145,150,160,165,170,180, %T A345853 185,195,200,210,215,225,230,245,250,260,275,290,330,370,385,400,410, %U A345853 435,450,465,490,500,515,530,570,610,625,634,640,649,650,664,675,679 %N A345853 Numbers that are the sum of ten fourth powers in exactly one ways. %C A345853 Differs from A003344 at term 30 because 265 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4. %H A345853 Sean A. Irvine, <a href="/A345853/b345853.txt">Table of n, a(n) for n = 1..10000</a> %e A345853 25 is a term because 25 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4. %o A345853 (Python) %o A345853 from itertools import combinations_with_replacement as cwr %o A345853 from collections import defaultdict %o A345853 keep = defaultdict(lambda: 0) %o A345853 power_terms = [x**4 for x in range(1, 1000)] %o A345853 for pos in cwr(power_terms, 10): %o A345853 tot = sum(pos) %o A345853 keep[tot] += 1 %o A345853 rets = sorted([k for k, v in keep.items() if v == 1]) %o A345853 for x in range(len(rets)): %o A345853 print(rets[x]) %Y A345853 Cf. A003344, A345803, A345843, A345854, A346346. %K A345853 nonn %O A345853 1,1 %A A345853 _David Consiglio, Jr._, Jun 26 2021