cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345853 Numbers that are the sum of ten fourth powers in exactly one ways.

This page as a plain text file.
%I A345853 #6 Jul 31 2021 20:00:03
%S A345853 10,25,40,55,70,85,90,100,105,115,120,130,135,145,150,160,165,170,180,
%T A345853 185,195,200,210,215,225,230,245,250,260,275,290,330,370,385,400,410,
%U A345853 435,450,465,490,500,515,530,570,610,625,634,640,649,650,664,675,679
%N A345853 Numbers that are the sum of ten fourth powers in exactly one ways.
%C A345853 Differs from A003344 at term 30 because 265 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4.
%H A345853 Sean A. Irvine, <a href="/A345853/b345853.txt">Table of n, a(n) for n = 1..10000</a>
%e A345853 25 is a term because 25 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4.
%o A345853 (Python)
%o A345853 from itertools import combinations_with_replacement as cwr
%o A345853 from collections import defaultdict
%o A345853 keep = defaultdict(lambda: 0)
%o A345853 power_terms = [x**4 for x in range(1, 1000)]
%o A345853 for pos in cwr(power_terms, 10):
%o A345853     tot = sum(pos)
%o A345853     keep[tot] += 1
%o A345853     rets = sorted([k for k, v in keep.items() if v == 1])
%o A345853     for x in range(len(rets)):
%o A345853         print(rets[x])
%Y A345853 Cf. A003344, A345803, A345843, A345854, A346346.
%K A345853 nonn
%O A345853 1,1
%A A345853 _David Consiglio, Jr._, Jun 26 2021