cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345854 Numbers that are the sum of ten fourth powers in exactly two ways.

This page as a plain text file.
%I A345854 #6 Jul 31 2021 20:00:07
%S A345854 265,280,295,310,325,340,345,355,360,375,390,405,420,425,440,455,470,
%T A345854 485,505,565,580,585,595,630,645,660,665,695,710,725,745,760,805,820,
%U A345854 835,840,870,885,889,900,904,919,920,934,935,949,950,964,965,969,984,999
%N A345854 Numbers that are the sum of ten fourth powers in exactly two ways.
%C A345854 Differs from A345595 at term 20 because 520 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4  = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4  = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
%H A345854 Sean A. Irvine, <a href="/A345854/b345854.txt">Table of n, a(n) for n = 1..10000</a>
%e A345854 280 is a term because 280 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4.
%o A345854 (Python)
%o A345854 from itertools import combinations_with_replacement as cwr
%o A345854 from collections import defaultdict
%o A345854 keep = defaultdict(lambda: 0)
%o A345854 power_terms = [x**4 for x in range(1, 1000)]
%o A345854 for pos in cwr(power_terms, 10):
%o A345854     tot = sum(pos)
%o A345854     keep[tot] += 1
%o A345854     rets = sorted([k for k, v in keep.items() if v == 2])
%o A345854     for x in range(len(rets)):
%o A345854         print(rets[x])
%Y A345854 Cf. A345595, A345804, A345844, A345853, A345855, A346347.
%K A345854 nonn
%O A345854 1,1
%A A345854 _David Consiglio, Jr._, Jun 26 2021