This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345854 #6 Jul 31 2021 20:00:07 %S A345854 265,280,295,310,325,340,345,355,360,375,390,405,420,425,440,455,470, %T A345854 485,505,565,580,585,595,630,645,660,665,695,710,725,745,760,805,820, %U A345854 835,840,870,885,889,900,904,919,920,934,935,949,950,964,965,969,984,999 %N A345854 Numbers that are the sum of ten fourth powers in exactly two ways. %C A345854 Differs from A345595 at term 20 because 520 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4. %H A345854 Sean A. Irvine, <a href="/A345854/b345854.txt">Table of n, a(n) for n = 1..10000</a> %e A345854 280 is a term because 280 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4. %o A345854 (Python) %o A345854 from itertools import combinations_with_replacement as cwr %o A345854 from collections import defaultdict %o A345854 keep = defaultdict(lambda: 0) %o A345854 power_terms = [x**4 for x in range(1, 1000)] %o A345854 for pos in cwr(power_terms, 10): %o A345854 tot = sum(pos) %o A345854 keep[tot] += 1 %o A345854 rets = sorted([k for k, v in keep.items() if v == 2]) %o A345854 for x in range(len(rets)): %o A345854 print(rets[x]) %Y A345854 Cf. A345595, A345804, A345844, A345853, A345855, A346347. %K A345854 nonn %O A345854 1,1 %A A345854 _David Consiglio, Jr._, Jun 26 2021