cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345855 Numbers that are the sum of ten fourth powers in exactly three ways.

This page as a plain text file.
%I A345855 #6 Jul 31 2021 20:00:10
%S A345855 520,535,550,600,615,680,775,790,855,1030,1144,1159,1224,1365,1380,
%T A345855 1399,1445,1540,1555,1605,1635,1685,1700,1768,1795,1815,1830,1860,
%U A345855 1875,1895,1989,2070,2164,2229,2244,2439,2485,2580,2595,2645,2675,2680,2695,2710,2755
%N A345855 Numbers that are the sum of ten fourth powers in exactly three ways.
%C A345855 Differs from A345596 at term 21 because 1620 = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4  = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4.
%H A345855 Sean A. Irvine, <a href="/A345855/b345855.txt">Table of n, a(n) for n = 1..10000</a>
%e A345855 535 is a term because 535 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4.
%o A345855 (Python)
%o A345855 from itertools import combinations_with_replacement as cwr
%o A345855 from collections import defaultdict
%o A345855 keep = defaultdict(lambda: 0)
%o A345855 power_terms = [x**4 for x in range(1, 1000)]
%o A345855 for pos in cwr(power_terms, 10):
%o A345855     tot = sum(pos)
%o A345855     keep[tot] += 1
%o A345855     rets = sorted([k for k, v in keep.items() if v == 3])
%o A345855     for x in range(len(rets)):
%o A345855         print(rets[x])
%Y A345855 Cf. A345596, A345805, A345845, A345854, A345856, A346348.
%K A345855 nonn
%O A345855 1,1
%A A345855 _David Consiglio, Jr._, Jun 26 2021