cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345859 Numbers that are the sum of ten fourth powers in exactly seven ways.

This page as a plain text file.
%I A345859 #6 Jul 31 2021 20:00:24
%S A345859 4485,5445,5460,5525,5540,5590,5605,5670,5700,5715,5765,5780,5830,
%T A345859 5845,6645,6710,6775,6855,6900,6915,6930,6935,6965,6980,7175,7190,
%U A345859 7235,7255,7335,7364,7415,7430,7475,7479,7495,7510,7604,7620,7654,7669,7670,7685,7715
%N A345859 Numbers that are the sum of ten fourth powers in exactly seven ways.
%C A345859 Differs from A345600 at term 16 because 6675 = 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4  = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 9^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 7^4 + 8^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4  = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4  = 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4  = 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 7^4 + 7^4.
%H A345859 Sean A. Irvine, <a href="/A345859/b345859.txt">Table of n, a(n) for n = 1..9598</a>
%e A345859 5445 is a term because 5445 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 7^4 + 7^4 = 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 7^4 = 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 8^4 = 4^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4.
%o A345859 (Python)
%o A345859 from itertools import combinations_with_replacement as cwr
%o A345859 from collections import defaultdict
%o A345859 keep = defaultdict(lambda: 0)
%o A345859 power_terms = [x**4 for x in range(1, 1000)]
%o A345859 for pos in cwr(power_terms, 10):
%o A345859     tot = sum(pos)
%o A345859     keep[tot] += 1
%o A345859     rets = sorted([k for k, v in keep.items() if v == 7])
%o A345859     for x in range(len(rets)):
%o A345859         print(rets[x])
%Y A345859 Cf. A345600, A345809, A345849, A345858, A345860, A346352.
%K A345859 nonn
%O A345859 1,1
%A A345859 _David Consiglio, Jr._, Jun 26 2021