cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345860 Numbers that are the sum of ten fourth powers in exactly eight ways.

This page as a plain text file.
%I A345860 #6 Jul 31 2021 20:00:27
%S A345860 6675,6740,6755,6805,6995,7015,7030,7045,7095,7270,7300,7365,7429,
%T A345860 7494,7525,7540,7590,7605,7750,7780,7845,7955,8005,8085,8150,8195,
%U A345860 8215,8310,8450,8470,8500,8630,8644,8709,8710,8790,8885,8949,9124,9189,9190,9250,9255
%N A345860 Numbers that are the sum of ten fourth powers in exactly eight ways.
%C A345860 Differs from A345601 at term 5 because 6820 = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 7^4 + 8^4  = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 6^4 + 6^4 + 8^4  = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 9^4  = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4  = 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4  = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
%H A345860 Sean A. Irvine, <a href="/A345860/b345860.txt">Table of n, a(n) for n = 1..8900</a>
%e A345860 6740 is a term because 6740 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 7^4 + 8^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4 = 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 8^4.
%o A345860 (Python)
%o A345860 from itertools import combinations_with_replacement as cwr
%o A345860 from collections import defaultdict
%o A345860 keep = defaultdict(lambda: 0)
%o A345860 power_terms = [x**4 for x in range(1, 1000)]
%o A345860 for pos in cwr(power_terms, 10):
%o A345860     tot = sum(pos)
%o A345860     keep[tot] += 1
%o A345860     rets = sorted([k for k, v in keep.items() if v == 8])
%o A345860     for x in range(len(rets)):
%o A345860         print(rets[x])
%Y A345860 Cf. A345601, A345810, A345850, A345859, A345861, A346353.
%K A345860 nonn
%O A345860 1,1
%A A345860 _David Consiglio, Jr._, Jun 26 2021