cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345861 Numbers that are the sum of ten fourth powers in exactly nine ways.

This page as a plain text file.
%I A345861 #6 Jul 31 2021 20:00:32
%S A345861 6820,6870,6950,7060,7110,7125,7285,7350,7860,7925,8020,8230,8245,
%T A345861 8260,8325,8390,8405,8645,8755,8820,8884,8965,8995,9030,9045,9060,
%U A345861 9075,9125,9220,9270,9365,9430,9475,9490,9525,9605,9730,9735,9765,9815,9895,9910,10035
%N A345861 Numbers that are the sum of ten fourth powers in exactly nine ways.
%C A345861 Differs from A345602 at term 3 because 6885 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4  = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4  = 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4  = 1^4 + 1^4 + 1^4 + 2^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4  = 1^4 + 1^4 + 1^4 + 3^4 + 4^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4  = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4  = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4  = 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4  = 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 6^4 + 6^4 + 6^4 + 6^4 + 6^4.
%H A345861 Sean A. Irvine, <a href="/A345861/b345861.txt">Table of n, a(n) for n = 1..10000</a>
%e A345861 6870 is a term because 6870 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 4^4 + 9^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 7^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 6^4 + 6^4 + 8^4 = 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 1^4 + 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 9^4 = 1^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 7^4 + 8^4 = 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 + 4^4 + 6^4 + 7^4 + 7^4 = 1^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 6^4 + 6^4 + 6^4 + 7^4 = 2^4 + 2^4 + 2^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4 + 7^4.
%o A345861 (Python)
%o A345861 from itertools import combinations_with_replacement as cwr
%o A345861 from collections import defaultdict
%o A345861 keep = defaultdict(lambda: 0)
%o A345861 power_terms = [x**4 for x in range(1, 1000)]
%o A345861 for pos in cwr(power_terms, 10):
%o A345861     tot = sum(pos)
%o A345861     keep[tot] += 1
%o A345861     rets = sorted([k for k, v in keep.items() if v == 9])
%o A345861     for x in range(len(rets)):
%o A345861         print(rets[x])
%Y A345861 Cf. A345602, A345811, A345851, A345860, A345862, A346354.
%K A345861 nonn
%O A345861 1,1
%A A345861 _David Consiglio, Jr._, Jun 26 2021