This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345865 #6 Jul 31 2021 23:46:55 %S A345865 6963472309248,12625136269928,21131226514944,26059452841000, %T A345865 55707778473984,74213505639000,95773976104625,101001090159424, %U A345865 159380205560856,169049812119552,174396242861568,188013752349696,208475622728000,300656502205416,340878679288056 %N A345865 Numbers that are the sum of two cubes in exactly four ways. %C A345865 Differs from A023051 at term 143 because 48988659276962496 = 331954^3 + 231518^3 = 336588^3 + 221424^3 = 342952^3 + 205292^3 = 362753^3 + 107839^3 = 365757^3 + 38787^3. %H A345865 Sean A. Irvine, <a href="/A345865/b345865.txt">Table of n, a(n) for n = 1..154</a> %e A345865 12625136269928 is a term because 12625136269928 = 21869^3 + 12939^3 = 22580^3 + 10362^3 = 23066^3 + 7068^3 = 23237^3 + 4275^3. %o A345865 (Python) %o A345865 from itertools import combinations_with_replacement as cwr %o A345865 from collections import defaultdict %o A345865 keep = defaultdict(lambda: 0) %o A345865 power_terms = [x**3 for x in range(1, 1000)] %o A345865 for pos in cwr(power_terms, 2): %o A345865 tot = sum(pos) %o A345865 keep[tot] += 1 %o A345865 rets = sorted([k for k, v in keep.items() if v == 4]) %o A345865 for x in range(len(rets)): %o A345865 print(rets[x]) %Y A345865 Cf. A023051, A025287, A343969, A344804. %K A345865 nonn %O A345865 1,1 %A A345865 _David Consiglio, Jr._, Jul 05 2021