cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345865 Numbers that are the sum of two cubes in exactly four ways.

This page as a plain text file.
%I A345865 #6 Jul 31 2021 23:46:55
%S A345865 6963472309248,12625136269928,21131226514944,26059452841000,
%T A345865 55707778473984,74213505639000,95773976104625,101001090159424,
%U A345865 159380205560856,169049812119552,174396242861568,188013752349696,208475622728000,300656502205416,340878679288056
%N A345865 Numbers that are the sum of two cubes in exactly four ways.
%C A345865 Differs from A023051 at term 143 because 48988659276962496 = 331954^3 + 231518^3 = 336588^3 + 221424^3 = 342952^3 + 205292^3 = 362753^3 + 107839^3 = 365757^3 + 38787^3.
%H A345865 Sean A. Irvine, <a href="/A345865/b345865.txt">Table of n, a(n) for n = 1..154</a>
%e A345865 12625136269928 is a term because 12625136269928 = 21869^3 + 12939^3 = 22580^3 + 10362^3 = 23066^3 + 7068^3 = 23237^3 + 4275^3.
%o A345865 (Python)
%o A345865 from itertools import combinations_with_replacement as cwr
%o A345865 from collections import defaultdict
%o A345865 keep = defaultdict(lambda: 0)
%o A345865 power_terms = [x**3 for x in range(1, 1000)]
%o A345865 for pos in cwr(power_terms, 2):
%o A345865     tot = sum(pos)
%o A345865     keep[tot] += 1
%o A345865     rets = sorted([k for k, v in keep.items() if v == 4])
%o A345865     for x in range(len(rets)):
%o A345865         print(rets[x])
%Y A345865 Cf. A023051, A025287, A343969, A344804.
%K A345865 nonn
%O A345865 1,1
%A A345865 _David Consiglio, Jr._, Jul 05 2021