A345924 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum -2.
12, 40, 49, 51, 54, 60, 144, 161, 163, 166, 172, 184, 194, 197, 199, 202, 205, 207, 212, 217, 219, 222, 232, 241, 243, 246, 252, 544, 577, 579, 582, 588, 600, 624, 642, 645, 647, 650, 653, 655, 660, 665, 667, 670, 680, 689, 691, 694, 700, 720, 737, 739, 742
Offset: 1
Keywords
Examples
The initial terms and the corresponding compositions: 12: (1,3) 202: (1,3,2,2) 582: (3,4,1,2) 40: (2,4) 205: (1,3,1,2,1) 588: (3,3,1,3) 49: (1,4,1) 207: (1,3,1,1,1,1) 600: (3,2,1,4) 51: (1,3,1,1) 212: (1,2,2,3) 624: (3,1,1,5) 54: (1,2,1,2) 217: (1,2,1,3,1) 642: (2,6,2) 60: (1,1,1,3) 219: (1,2,1,2,1,1) 645: (2,5,2,1) 144: (3,5) 222: (1,2,1,1,1,2) 647: (2,5,1,1,1) 161: (2,5,1) 232: (1,1,2,4) 650: (2,4,2,2) 163: (2,4,1,1) 241: (1,1,1,4,1) 653: (2,4,1,2,1) 166: (2,3,1,2) 243: (1,1,1,3,1,1) 655: (2,4,1,1,1,1) 172: (2,2,1,3) 246: (1,1,1,2,1,2) 660: (2,3,2,3) 184: (2,1,1,4) 252: (1,1,1,1,1,3) 665: (2,3,1,3,1) 194: (1,5,2) 544: (4,6) 667: (2,3,1,2,1,1) 197: (1,4,2,1) 577: (3,6,1) 670: (2,3,1,1,1,2) 199: (1,4,1,1,1) 579: (3,5,1,1) 680: (2,2,2,4)
Crossrefs
These compositions are counted by A002054.
These are the positions of -2's in A124754.
The version for reverse-alternating sum is A345923.
The opposite (positive 2) version is A345925.
The version for Heinz numbers of partitions is A345962.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Select[Range[0,100],ats[stc[#]]==-2&]
Comments