A345925 Numbers k such that the k-th composition in standard order (row k of A066099) has alternating sum 2.
2, 9, 11, 14, 34, 37, 39, 42, 45, 47, 52, 57, 59, 62, 132, 137, 139, 142, 146, 149, 151, 154, 157, 159, 164, 169, 171, 174, 178, 181, 183, 186, 189, 191, 200, 209, 211, 214, 220, 226, 229, 231, 234, 237, 239, 244, 249, 251, 254, 520, 529, 531, 534, 540, 546
Offset: 1
Keywords
Examples
The initial terms and corresponding compositions: 2: (2) 137: (4,3,1) 9: (3,1) 139: (4,2,1,1) 11: (2,1,1) 142: (4,1,1,2) 14: (1,1,2) 146: (3,3,2) 34: (4,2) 149: (3,2,2,1) 37: (3,2,1) 151: (3,2,1,1,1) 39: (3,1,1,1) 154: (3,1,2,2) 42: (2,2,2) 157: (3,1,1,2,1) 45: (2,1,2,1) 159: (3,1,1,1,1,1) 47: (2,1,1,1,1) 164: (2,3,3) 52: (1,2,3) 169: (2,2,3,1) 57: (1,1,3,1) 171: (2,2,2,1,1) 59: (1,1,2,1,1) 174: (2,2,1,1,2) 62: (1,1,1,1,2) 178: (2,1,3,2) 132: (5,3) 181: (2,1,2,2,1)
Crossrefs
These compositions are counted by A088218.
These are the positions of 2's in A124754.
The case of partitions of 2n is A344741.
The version for reverse-alternating sum is A345922.
The opposite (negative 2) version is A345924.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A120452 counts partitions of 2n with reverse-alternating sum 2.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Select[Range[0,100],ats[stc[#]]==2&]
Comments