cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345928 Decimal expansion of Integral_{x>=0} (zeta(x)-1) dx (negated).

This page as a plain text file.
%I A345928 #5 Jun 30 2021 02:39:23
%S A345928 2,4,3,2,3,8,3,4,2,8,9,0,9,8,0,7,5,5,4,1,5,0,5,9,1,3,5,4,6,5,4,6,2,3,
%T A345928 0,7,1,7,8,3,0,4,9
%N A345928 Decimal expansion of Integral_{x>=0} (zeta(x)-1) dx (negated).
%C A345928 Robinson (1980) conjectured and Newman and Widder (1981) proved that this integral is equal to the limit given in the Formula section.
%D A345928 Murray S. Klamkin (ed.), Problems in Applied Mathematics: Selections from SIAM Review, Philadelphia, PA: Society for Industrial and Applied Mathematics, 1990, pp. 281-282.
%H A345928 H. P. Robinson, <a href="http://www.jstor.org/stable/2029968">A Conjectured Limit</a>, Problem 80-7, SIAM Review, Vol. 22, No. 2 (1980), p. 229; D. J. Newman and D. V. Widder, <a href="http://www.jstor.org/stable/2030000">Solution</a>, ibid., Vol. 23, No. 2 (1981), pp. 256-257.
%F A345928 Equals lim_{n->oo} (Sum_{k=2..n} 1/log(k) - Integral_{x=0..n} (1/log(x)) dx).
%e A345928 -0.2432383428909807554150591354654623071783049...
%Y A345928 Cf. A099769, A168218.
%K A345928 nonn,cons,more
%O A345928 0,1
%A A345928 _Amiram Eldar_, Jun 29 2021