cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345938 a(n) = uphi(n) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.

This page as a plain text file.
%I A345938 #17 Jul 04 2021 15:54:13
%S A345938 1,1,1,1,1,2,1,1,1,4,1,6,1,6,4,1,1,8,1,12,3,10,1,14,1,12,1,2,1,8,1,1,
%T A345938 5,16,12,24,1,18,12,28,1,12,1,30,8,22,1,30,1,24,16,12,1,26,20,42,9,28,
%U A345938 1,24,1,30,24,1,3,4,1,48,11,8,1,56,1,36,24,18,15,24,1,60,1,40,1,36,16,42,28,70,1,32,4,66,15
%N A345938 a(n) = uphi(n) / gcd(n-1, uphi(n)), where uphi is unitary totient (or unitary phi) function, A047994.
%C A345938 For all squarefree n (A005117), a(n) = A160595(n), thus if there are any composite solutions to the Lehmer's totient conjecture, then they give also a such a subset of positions of 1's in this sequence that are not powers of primes. See comments in A160595.
%H A345938 Antti Karttunen, <a href="/A345938/b345938.txt">Table of n, a(n) for n = 1..16384</a>
%H A345938 Antti Karttunen, <a href="/A345938/a345938.txt">Data supplement: n, a(n) computed for n = 1..65537</a>
%H A345938 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lehmer&#39;s_totient_problem">Lehmer's totient problem</a>
%F A345938 a(n) = A047994(n) / A345937(n) = A047994(n) / gcd(n-1, A047994(n)).
%F A345938 a(2n-1) = A345948(2n-1), for all n >= 1.
%t A345938 uphi[1]=1;uphi[n_]:=Times@@(#[[1]]^#[[2]]-1&/@FactorInteger[n]);
%t A345938 a[n_]:=uphi[n]/GCD[n-1,uphi[n]];Array[a,100]  (* _Giorgos Kalogeropoulos_, Jun 30 2021 *)
%o A345938 (PARI)
%o A345938 A047994(n) = { my(f=factor(n)~); prod(i=1, #f, (f[1, i]^f[2, i])-1); };
%o A345938 A345938(n) = { my(u=A047994(n)); (u/gcd(n-1, u)); };
%Y A345938 Cf. A005117, A047994, A345937, A345939.
%Y A345938 Cf. also A160595, A340088, A345948.
%K A345938 nonn
%O A345938 1,6
%A A345938 _Antti Karttunen_, Jun 29 2021