cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345955 Number of isomorphism classes of indecomposable Fano Bott manifolds of complex dimension n.

This page as a plain text file.
%I A345955 #22 Jul 05 2021 15:02:19
%S A345955 1,1,3,7,21,60,189,595,1948,6455,21804,74464,257311,896874,3151564,
%T A345955 11148982,39680010,141969156,510352307,1842370850,6676349598,
%U A345955 24277171876,88556616799,323959047186,1188237214539,4368874535437,16099389598907,59449932709972,219953954227839
%N A345955 Number of isomorphism classes of indecomposable Fano Bott manifolds of complex dimension n.
%C A345955 a(n) is also the number of rooted triangular cacti with 2n+1 nodes (n triangles) with one triangle at the root vertex.
%H A345955 Yunhyung Cho, Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, <a href="http://arxiv.org/abs/2106.12788">On the enumeration of Fano Bott manifolds</a>, arXiv:2106.12788 [math.AG], 2021. See Table 1 p. 8.
%H A345955 Frank Harary and George E. Uhlenbeck, <a href="https://doi.org/10.1073/pnas.39.4.315 ">On the number of Husimi trees. I</a>, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 315-322.
%F A345955 G.f.: (x/2)*(F(x^2)+F(x)^2) where F(x) is the g.f. of A003080 (see the equation (1) in [Harary-Uhlenbeck] or [Cho-Lee-Masuda-Park, Lemma 4.3]).
%Y A345955 Cf. A003080.
%K A345955 nonn
%O A345955 1,3
%A A345955 _Eunjeong Lee_, Jun 29 2021