This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345957 #20 Aug 21 2021 13:22:04 %S A345957 1,0,0,1,0,2,0,0,1,2,0,0,0,2,2,1,0,0,0,0,2,2,0,2,1,2,0,0,0,0,0,0,2,2, %T A345957 2,3,0,2,2,2,0,0,0,0,0,2,0,0,1,0,2,0,0,2,2,2,2,2,0,4,0,2,0,1,2,0,0,0, %U A345957 2,0,0,0,0,2,0,0,2,0,0,0,1,2,0,4,2,2,2 %N A345957 Number of divisors of n with exactly half as many prime factors as n, counting multiplicity. %C A345957 These divisors do not necessarily include the central divisors (A207375), and may not themselves be central. %e A345957 The a(n) divisors for selected n: %e A345957 n = 1: 6: 36: 60: 210: 840: 900: 1260: 1296: 3600: %e A345957 -------------------------------------------------------- %e A345957 1 2 4 4 6 8 12 12 16 16 %e A345957 3 6 6 10 12 18 18 24 24 %e A345957 9 10 14 20 20 20 36 36 %e A345957 15 15 28 30 28 54 40 %e A345957 21 30 45 30 81 60 %e A345957 35 42 50 42 90 %e A345957 70 75 45 100 %e A345957 105 63 150 %e A345957 70 225 %e A345957 105 %t A345957 Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeOmega[n]/2&]],{n,100}] %o A345957 (PARI) a(n) = my(nb=bigomega(n)); sumdiv(n, d, 2*bigomega(d) == nb); \\ _Michel Marcus_, Aug 16 2021 %o A345957 (Python) %o A345957 from sympy import divisors, factorint %o A345957 def a(n): %o A345957 npf = len(factorint(n, multiple=True)) %o A345957 divs = divisors(n) %o A345957 return sum(2*len(factorint(d, multiple=True)) == npf for d in divs) %o A345957 print([a(n) for n in range(1, 88)]) # _Michael S. Branicky_, Aug 17 2021 %o A345957 (Python 3.8+) %o A345957 from itertools import combinations %o A345957 from math import prod, comb %o A345957 from sympy import factorint %o A345957 def A345957(n): %o A345957 if n == 1: %o A345957 return 1 %o A345957 fs = factorint(n) %o A345957 elist = list(fs.values()) %o A345957 q, r = divmod(sum(elist),2) %o A345957 k = len(elist) %o A345957 if r: %o A345957 return 0 %o A345957 c = 0 %o A345957 for i in range(k+1): %o A345957 m = (-1)**i %o A345957 for d in combinations(range(k),i): %o A345957 t = k+q-sum(elist[j] for j in d)-i-1 %o A345957 if t >= 0: %o A345957 c += m*comb(t,k-1) %o A345957 return c # _Chai Wah Wu_, Aug 20 2021 %o A345957 (Python) %o A345957 from sympy import factorint %o A345957 from sympy.utilities.iterables import multiset_combinations %o A345957 def A345957(n): %o A345957 if n == 1: %o A345957 return 1 %o A345957 fs = factorint(n,multiple=True) %o A345957 q, r = divmod(len(fs),2) %o A345957 return 0 if r else len(list(multiset_combinations(fs,q))) # _Chai Wah Wu_, Aug 20 2021 %Y A345957 The case of powers of 2 is A000035. %Y A345957 Positions of even terms are A000037. %Y A345957 Positions of odd terms are A000290. %Y A345957 Positions of 0's are A026424. %Y A345957 Positions of 1's are A056798. %Y A345957 The rounded version is A096825. %Y A345957 The case of all divisors (not just 2) is A347042. %Y A345957 The smallest of these divisors is A347045 (rounded: A347043). %Y A345957 The greatest of these divisors is A347046 (rounded: A347044). %Y A345957 A000005 counts divisors. %Y A345957 A001221 counts distinct prime factors. %Y A345957 A001222 counts all prime factors. %Y A345957 A056239 adds up prime indices, row sums of A112798. %Y A345957 A207375 lists central divisors. %Y A345957 A325534 counts separable partitions, ranked by A335433. %Y A345957 A325535 counts inseparable partitions, ranked by A335448. %Y A345957 A334997 counts chains of divisors of n by length. %Y A345957 Cf. A001227, A001414, A028260, A033676, A033677, A073093, A074206, A217581, A344653, A346697-A346704. %K A345957 nonn %O A345957 1,6 %A A345957 _Gus Wiseman_, Aug 16 2021