This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345958 #8 Jul 15 2021 15:08:01 %S A345958 2,6,8,15,18,24,32,35,50,54,60,72,77,96,98,128,135,140,143,150,162, %T A345958 200,216,221,240,242,288,294,308,315,323,338,375,384,392,437,450,486, %U A345958 512,540,560,572,578,600,648,667,693,722,726,735,800,864,875,882,884,899 %N A345958 Numbers whose prime indices have reverse-alternating sum 1. %C A345958 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A345958 The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i. Of course, the reverse-alternating sum of prime indices is also the alternating sum of reversed prime indices. %C A345958 Also numbers with exactly one odd conjugate prime index. Conjugate prime indices are listed by A321650, ranked by A122111. %e A345958 The initial terms and their prime indices: %e A345958 2: {1} %e A345958 6: {1,2} %e A345958 8: {1,1,1} %e A345958 15: {2,3} %e A345958 18: {1,2,2} %e A345958 24: {1,1,1,2} %e A345958 32: {1,1,1,1,1} %e A345958 35: {3,4} %e A345958 50: {1,3,3} %e A345958 54: {1,2,2,2} %e A345958 60: {1,1,2,3} %e A345958 72: {1,1,1,2,2} %e A345958 77: {4,5} %e A345958 96: {1,1,1,1,1,2} %e A345958 98: {1,4,4} %t A345958 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A345958 sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; %t A345958 Select[Range[100],sats[primeMS[#]]==1&] %Y A345958 The k > 0 version is A000037. %Y A345958 These multisets are counted by A000070. %Y A345958 The k = 0 version is A000290, counted by A000041. %Y A345958 The version for unreversed-alternating sum is A001105. %Y A345958 These partitions are counted by A035363. %Y A345958 These are the positions of 1's in A344616. %Y A345958 The k = 2 version is A345961, counted by A120452. %Y A345958 A000984/A345909/A345911 count/rank compositions with alternating sum 1. %Y A345958 A001791/A345910/A345912 count/rank compositions with alternating sum -1. %Y A345958 A088218 counts compositions with alternating sum 0, ranked by A344619. %Y A345958 A025047 counts wiggly compositions. %Y A345958 A027187 counts partitions with reverse-alternating sum <= 0. %Y A345958 A056239 adds up prime indices, row sums of A112798. %Y A345958 A097805 counts compositions by alternating (or reverse-alternating) sum. %Y A345958 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A345958 A316524 gives the alternating sum of prime indices. %Y A345958 A325534 and A325535 count separable and inseparable partitions. %Y A345958 A344606 counts alternating permutations of prime indices. %Y A345958 A344607 counts partitions with reverse-alternating sum >= 0. %Y A345958 A344610 counts partitions by sum and positive reverse-alternating sum. %Y A345958 Cf. A000097, A027193, A034871, A239830, A341446, A344650, A344651, A344743, A345917, A345918, A345920. %K A345958 nonn %O A345958 1,1 %A A345958 _Gus Wiseman_, Jul 11 2021