A345959 Numbers whose prime indices have alternating sum -1.
6, 15, 24, 35, 54, 60, 77, 96, 135, 140, 143, 150, 216, 221, 240, 294, 308, 315, 323, 375, 384, 437, 486, 540, 560, 572, 600, 667, 693, 726, 735, 864, 875, 884, 899, 960, 1014, 1147, 1176, 1215, 1232, 1260, 1287, 1292, 1350, 1500, 1517, 1536, 1715, 1734, 1748
Offset: 1
Keywords
Examples
The initial terms and their prime indices: 6: {1,2} 15: {2,3} 24: {1,1,1,2} 35: {3,4} 54: {1,2,2,2} 60: {1,1,2,3} 77: {4,5} 96: {1,1,1,1,1,2} 135: {2,2,2,3} 140: {1,1,3,4} 143: {5,6} 150: {1,2,3,3} 216: {1,1,1,2,2,2} 221: {6,7} 240: {1,1,1,1,2,3}
Crossrefs
These multisets are counted by A000070.
The k = 1 version is A001105.
The k > 0 version is A026424.
These are the positions of -1's in A316524.
The k = 2 version is A345960.
The k = -2 version is A345962.
A027187 counts partitions with reverse-alternating sum <= 0.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A344607 counts partitions with reverse-alternating sum >= 0.
A344616 gives the alternating sum of reversed prime indices.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Select[Range[0,100],ats[primeMS[#]]==-1&]
Comments