A345960 Numbers whose prime indices have alternating sum 2.
3, 12, 27, 30, 48, 70, 75, 108, 120, 147, 154, 192, 243, 270, 280, 286, 300, 363, 432, 442, 480, 507, 588, 616, 630, 646, 675, 750, 768, 867, 874, 972, 1080, 1083, 1120, 1144, 1200, 1323, 1334, 1386, 1452, 1470, 1587, 1728, 1750, 1768, 1798, 1875, 1920, 2028
Offset: 1
Keywords
Examples
The initial terms and their prime indices: 3: {2} 12: {1,1,2} 27: {2,2,2} 30: {1,2,3} 48: {1,1,1,1,2} 70: {1,3,4} 75: {2,3,3} 108: {1,1,2,2,2} 120: {1,1,1,2,3} 147: {2,4,4} 154: {1,4,5} 192: {1,1,1,1,1,1,2} 243: {2,2,2,2,2} 270: {1,2,2,2,3} 280: {1,1,1,3,4} 286: {1,5,6} 300: {1,1,2,3,3}
Crossrefs
These partitions are counted by A000097.
The k > 0 version is A026424.
These multisets are counted by A120452.
The k = -1 version is A345959.
The version for reversed alternating sum is A345961.
The k = -2 version is A345962.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A344606 counts alternating permutations of prime indices.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; Select[Range[0,100],ats[primeMS[#]]==2&]
Comments