A345961 Numbers whose prime indices have reverse-alternating sum 2.
3, 10, 12, 21, 27, 30, 40, 48, 55, 70, 75, 84, 90, 91, 108, 120, 147, 154, 160, 187, 189, 192, 210, 220, 243, 247, 250, 270, 280, 286, 300, 336, 360, 363, 364, 391, 432, 442, 462, 480, 490, 495, 507, 525, 551, 588, 616, 630, 640, 646, 675, 713, 748, 750, 756
Offset: 1
Keywords
Examples
The initial terms and their prime indices: 3: {2} 10: {1,3} 12: {1,1,2} 21: {2,4} 27: {2,2,2} 30: {1,2,3} 40: {1,1,1,3} 48: {1,1,1,1,2} 55: {3,5} 70: {1,3,4} 75: {2,3,3} 84: {1,1,2,4} 90: {1,2,2,3} 91: {4,6} 108: {1,1,2,2,2} 120: {1,1,1,2,3}
Crossrefs
Below we use k to indicate reverse-alternating sum.
The k > 0 version is A000037.
These multisets are counted by A000097.
These are the positions of 2's in A344616.
The k = -1 version is A345912.
The k = 1 version is A345958.
A000070 counts partitions with alternating sum 1.
A027187 counts partitions with reverse-alternating sum <= 0.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A316524 gives the alternating sum of prime indices.
A344606 counts alternating permutations of prime indices.
A344610 counts partitions by sum and positive reverse-alternating sum.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}]; Select[Range[100],sats[primeMS[#]]==2&]
Comments