This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345962 #7 Jul 15 2021 15:08:37 %S A345962 10,21,40,55,84,90,91,160,187,189,210,220,247,250,336,360,364,391,462, %T A345962 490,495,525,551,640,713,748,756,810,819,840,858,880,988,1000,1029, %U A345962 1073,1155,1210,1271,1326,1344,1375,1440,1456,1564,1591,1683,1690,1701,1848 %N A345962 Numbers whose prime indices have alternating sum -2. %C A345962 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A345962 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices. %C A345962 Also numbers with even Omega (A001222) and exactly two odd conjugate prime indices. The case of odd Omega is A345960, and the union is A345961. %e A345962 The initial terms and their prime indices: %e A345962 10: {1,3} %e A345962 21: {2,4} %e A345962 40: {1,1,1,3} %e A345962 55: {3,5} %e A345962 84: {1,1,2,4} %e A345962 90: {1,2,2,3} %e A345962 91: {4,6} %e A345962 160: {1,1,1,1,1,3} %e A345962 187: {5,7} %e A345962 189: {2,2,2,4} %e A345962 210: {1,2,3,4} %e A345962 220: {1,1,3,5} %e A345962 247: {6,8} %e A345962 250: {1,3,3,3} %e A345962 336: {1,1,1,1,2,4} %e A345962 360: {1,1,1,2,2,3} %t A345962 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A345962 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A345962 Select[Range[0,100],ats[primeMS[#]]==-2&] %Y A345962 Below we use k to indicate alternating sum. %Y A345962 The k = 0 version is A000290, counted by A000041. %Y A345962 The k = 1 version is A001105 (reverse: A345958). %Y A345962 The k > 0 version is A026424. %Y A345962 These are the positions of -2's in A316524. %Y A345962 These multisets are counted by A344741 (positive 2: A120452). %Y A345962 The k = -1 version is A345959. %Y A345962 The k = 2 version is A345960, counted by A000097. %Y A345962 A002054/A345924/A345923 count/rank compositions with alternating sum -2. %Y A345962 A056239 adds up prime indices, row sums of A112798. %Y A345962 A088218/A345925/A345922 count/rank compositions with alternating sum 2. %Y A345962 A097805 counts compositions by alternating (or reverse-alternating) sum. %Y A345962 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A345962 A325534 and A325535 count separable and inseparable partitions. %Y A345962 A344606 counts alternating permutations of prime indices. %Y A345962 Cf. A000037, A000070, A001791, A027187, A028260, A239830, A341446, A344609, A344616, A344651, A345197, A345910, A345912, A345961. %K A345962 nonn %O A345962 1,1 %A A345962 _Gus Wiseman_, Jul 12 2021