This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345970 #100 Sep 29 2021 13:05:57 %S A345970 40,112,352,400,832,1120,2176,3520,3136,4000,4864,8320,9856,11200, %T A345970 11776,21760,23296,30976,35200,31360,40000,29696,48640,60928,73216, %U A345970 83200,98560,87808,112000,63488,117760,136192,191488,173056,217600,232960,309760,275968,352000,313600,400000 %N A345970 Irregular triangle T(n,k) read by rows in which n-th row lists in colex order all series-reduced tree degree sequences D of n nodes encoded as t = Product_{d in D} prime(d); n >= 4, 1 <= k <= A002865(n-2). %C A345970 Tree degree sequences of n nodes are in one-to-one correspondence with the partitions of n-2, as for instance set out in Myerson's collection of problems [Myerson]. For series-reduced trees, these partitions have no part 1. %C A345970 Given a term t, the respective degree sequence D is determined by Decode(t). See second (PARI) entry. %C A345970 A250308(n) = Sum_{k= 1 .. A002865(2*n-2) } ( A345971(2*n,k) * odd( Decode( T(2*n,k) ) ), where odd(D) is 1 if all d in D are odd, and 0 otherwize. %H A345970 Gerry Myerson, <a href="https://www.math.colostate.edu/~achter/wntc/problems/problems2004.pdf">Problems 2004</a> %H A345970 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %e A345970 Triangle begins: %e A345970 n \ k| 1 2 ... n \ k| 1 2 ... %e A345970 -----+------------- -----+----------------------------------- %e A345970 4 | 40; 4 | [3,1,1,1]; %e A345970 5 | 112; 5 | [4,1,1,1,1]; %e A345970 6 | 352, 400; <=> 6 | [5,1,1,1,1,1], [3,3,1,1,1,1]; %e A345970 7 | 832, 1120; 7 | [6,1,1,1,1,1,1], [4,3,1,1,1,1,1]; %e A345970 ... ... %e A345970 Row n = 7 follows from table %e A345970 . %e A345970 +---------------------+------------------+---------------------------+ %e A345970 | Partitions of n-2 = | | | %e A345970 | 5 without parts 1 | Degree sequences | Encoding | %e A345970 +---------------------+------------------+---------------------------+ %e A345970 | [5] | 6,1,1,1,1,1,1 | prime(6) * 2^6 | %e A345970 | [2, 3] | 4,3,1,1,1,1,1 | prime(4) * prime(3) * 2^5 | %e A345970 +---------------------+------------------+---------------------------+ %o A345970 (PARI) Row(n) = {my(j=0, V = vector(numbpart(n-2) - numbpart(n-3))); %o A345970 forpart(P=n-2, V[j++] = prod(k=1,#P, prime(P[k]+1)) << (n-#P),[2, n-2]); V}; %o A345970 (PARI) Decode(t) = {my(V = [], i = 1, p); while(t > 1, p = prime(i); while(t % p == 0, t /= p; V = concat(V, Vec(i)) ); i++); vecsort(V, (x,y)->y-x) }; %Y A345970 Cf. A002865 (row widths), A265127 (column k=1), A345971 (number of trees by degree sequence), A344122 (free tree degree sequences), A250308. %K A345970 nonn,look,tabf,easy %O A345970 4,1 %A A345970 _Washington Bomfim_, Jul 01 2021