This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345971 #128 Sep 29 2021 13:08:21 %S A345971 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,2,1,1,1,1,2,3,1,4,1,1,1,1,1, %T A345971 2,3,2,2,4,6,2,1,1,1,1,1,2,3,3,2,2,4,9,4,8,1,1,1,1,1,1,2,3,3,2,2,3,1, %U A345971 4,9,6,9,2,8,14,4,1,1,1,1,1,1,2,3,3,3,2,3,2,2,4,9,9,9,9,4,8,25,14,15 %N A345971 Irregular triangle T(n,k) read by rows in which n-th row lists numbers of series-reduced trees realized by respective degree sequences in n-th row of A345970; n >= 4, 1 <= k <= A002865(n-2). %C A345971 The first floor((n-2)/2) terms of n-th row are all 1 thus the first floor((n-2)/2) degree sequences of n-th row of A345970 have only one realization. %C A345971 Let a "unigraph" be a graph which is the only realization of its degree sequence. Among all series-reduced trees on n vertices we have floor((n-2)/2) + [n>=8] * [(n-8) == 0 (mod 3)] unigraphs. %C A345971 Let T be a series-reduced tree of diameter dT, with h nodes of degree >= 3, and degree sequence D. If h <= 2, dT <= 3, and T is a unigraph [R. H. Johnson Corollary 2.3]. For each degree sequence the value of h is equal to the number of parts of a unique partition [Myerson], thus the number of unigraphs would be equal to the number of partitions (without parts 1) of n-2 with at most 2 parts, which is floor((n-2)/2). Degree sequences of the form [d,d,d,1,..,1] give an additional unigraph when n >= 8 and (n-8) == 0 (mod 3). These unigraphic sequences can be depicted as: %C A345971 _|_|_|_ , _|_|_|_ , ... %C A345971 | | | %C A345971 A250308(n) = Sum_{ k= 1 .. A002865(2*n-2) } ( T(2*n,k) * odd( Decode( A345970(2*n, k) ) ), where odd(D) is 1 if all d in D are odd, and 0 otherwize. %H A345971 Nima Amini, <a href="https://amininima.wordpress.com/2013/05/12/not-that-good-will-hunting/">Not That Good, Will Hunting</a> %H A345971 R. H. Johnson, <a href="https://doi.org/10.1016/0012-365X(80)90035-7">Properties of unique realizations-a survey</a>, Discrete Mathematics, Volume 31 January, 1980 pp 185-192. %H A345971 B. D. McKay, <a href="http://users.cecs.anu.edu.au/~bdm/data/trees.html">Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes.</a> %H A345971 Gerry Myerson, <a href="https://www.math.colostate.edu/~achter/wntc/problems/problems2004.pdf">Problems2004</a> %H A345971 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %e A345971 Row number 9 is {1, 1, 1, 2} because the 9th row of A345970 is {4864, 8320, 9856, 11200} which can be decoded (using Decode() of A345970) to the 4-degree sequences [8,1,1,1,1,1,1,1,1], which obviously has just 1 realization, [6,3,1,1,1,1,1,1,1], [5,4,1,1,1,1,1,1,1], that also have one, and [4,3,3,1,1,1,1,1,1] which realizes the 2 trees: %e A345971 . %e A345971 * * * * * * %e A345971 | | | | | | %e A345971 *--0--*--* *--*--0--* %e A345971 | | | | %e A345971 * * * * %e A345971 . %e A345971 Triangle begins %e A345971 n \ k 1 2 3 4 5 6 7 8 9 10 11 12 %e A345971 4 1; %e A345971 5 1; %e A345971 6 1, 1; %e A345971 7 1, 1; %e A345971 8 1, 1, 1, 1; %e A345971 9 1, 1, 1, 2; %e A345971 10 1, 1, 1, 1, 2, 2, 2; %e A345971 11 1, 1, 1, 1, 2, 3, 1, 4; %e A345971 12 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 6, 2; %e A345971 ... %o A345971 (PARI) %o A345971 D_Generator(n) = { my(D = vectorsmall(n), j); %o A345971 M = Map(); \\ For each partition of n-2, "P", %o A345971 forpart( P = n-2, \\ P without parts 1, make D = %o A345971 for(i = 1, n-#P, D[i] = 1); j = n-#P; \\ [1..1 0..0], n-#P terms 1, and %o A345971 for(i = 1, #P, D[j++] = P[i] + 1); \\ #p terms 0. Complete D. %o A345971 mapput(M, D, 0) , [2, n-2] ) \\ store D. %o A345971 }; %o A345971 EdgesList2D(n, Tr) = {my(D = vectorsmall(n), E = strsplit(Tr, " "), u_v); %o A345971 for(j = 1, n-1, u_v = strsplit(E[j], " "); u_v = eval(u_v); %o A345971 D[ u_v[1]+1 ]++; D[ u_v[2]+1 ]++); vecsort(D) }; %o A345971 \\ Using files hitree4.txt etc from McKay. %o A345971 Rows(r1, r2) = {my(Trees, D, j, C); for(n = r1, r2, %o A345971 Trees = readstr(Str("hitree", n, ".txt")); D_Generator(n); %o A345971 for(i = 1, #Trees, D = EdgesList2D(n, Trees[i]); j = mapget(M, D); mapput(~M, D, j+1)); %o A345971 C = Mat(M)[, 2]; print1(n" "); for(i = 1, #C, print1(C[i]", ")); print() ) }; %Y A345971 Cf. A000014 (row sums), A002865 (row widths), A345970 (encoded degree sequences), A250308. %K A345971 nonn,tabf %O A345971 4,14 %A A345971 _Washington Bomfim_, Jul 05 2021