This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345973 #10 Aug 12 2021 05:40:49 %S A345973 1,1,1,2,3,6,10,20,36,73,138,281,549,1136,2263,4705,9553,20015,41096, %T A345973 86643,179638,380701,795892,1693003,3562217,7612680,16099538,34505797, %U A345973 73345831,157678081,336419942,725236780,1552662599,3354979195,7205601904,15600414855,33594465666 %N A345973 G.f.: x + x^2 / Product_{n>=1} (1 - a(n)*x^n). %H A345973 David Callan, <a href="https://arxiv.org/abs/2108.04969">A Combinatorial Interpretation for Sequence A345973 in OEIS</a>, arXiv:2108.04969 [math.CO], 2021. %F A345973 G.f.: x + x^2 * exp(Sum_{n>=1} Sum_{k>=1} a(n)^k * x^(n*k) / k). %F A345973 a(n+2) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d)^(k/d) ) * a(n-k+2). %p A345973 a:= proc(n) option remember; `if`(n<3, 1, add(a(n-k)*add(d* %p A345973 a(d)^(k/d), d=numtheory[divisors](k)), k=1..n-2)/(n-2)) %p A345973 end: %p A345973 seq(a(n), n=1..37); # _Alois P. Heinz_, Jul 01 2021 %t A345973 a[n_] := a[n] = SeriesCoefficient[x + x^2/Product[(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 37}] %t A345973 a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d a[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 37}] %Y A345973 Cf. A007562, A032307, A093637. %K A345973 nonn %O A345973 1,4 %A A345973 _Ilya Gutkovskiy_, Jun 30 2021