cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A345987 Decimal expansion of constant mu(ell) arising in study of complexity of Euclidean algorithm.

This page as a plain text file.
%I A345987 #14 Jul 12 2021 14:55:05
%S A345987 1,8,9,9,1,9,3,2,4,3,9,1,0,8,8,0,6,7,9,4,4,8,2,8,3,2,0,6,9,8,1,2,5,1,
%T A345987 2,0,7,9,1,9,9,4,8,2,7,1,0,0,9,0,6,9,9,2,1,9,8,0,6,9,2,1,4,7,9,7,2,7,
%U A345987 8,8,9,0,9,6,5,6,8,1,4,2,8,6,6,9,5,6,1,8,8,1,1,3,1,4,1,6,3,3,7,5,5,5,5,6
%N A345987 Decimal expansion of constant mu(ell) arising in study of complexity of Euclidean algorithm.
%C A345987 The constant is (12/Pi^2)*log(Product_{i>=0} (1+1/2^i)).
%D A345987 Lhote, Loïck, and Brigitte Vallée. "Sharp estimates for the main parameters of the Euclid Algorithm." In Latin American Symposium on Theoretical Informatics, pp. 689-702. Springer, Berlin, Heidelberg, 2006.
%F A345987 Equals 12*log(QPochhammer(-1,1/2))/Pi^2. - _Stefano Spezia_, Jul 12 2021
%e A345987 1.89919324391088067944828320698125120791994827100906...
%p A345987 evalf(12/Pi^2*log(product(1+1/2^i, i=0..infinity)), 120);  # _Alois P. Heinz_, Jul 12 2021
%t A345987 RealDigits[(12/Pi^2)*Log[Product[1 + 1/2^i, {i, 0, Infinity}]], 10, 105][[1]] (* _Amiram Eldar_, Jul 12 2021 *)
%Y A345987 Cf. A081845.
%K A345987 nonn,cons
%O A345987 1,2
%A A345987 _N. J. A. Sloane_, Jul 12 2021