This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A345988 #14 Jul 10 2024 14:34:56 %S A345988 2,2,6,12,20,6,42,56,72,20,110,12,156,42,30,240,272,72,342,20,42,110, %T A345988 506,72,600,156,702,56,812,30,930,992,132,272,210,72,1332,342,156,240, %U A345988 1640,42,1806,132,90,506,2162,240,2352,600,306,156,2756,702,110,56,342,812,3422,240 %N A345988 Smallest oblong number m*(m+1) that is divisible by n. %C A345988 Equals A344005(n)*(A344005(n)+1). See A344005 for much more about this problem. %H A345988 Chai Wah Wu, <a href="/A345988/b345988.txt">Table of n, a(n) for n = 1..10000</a> %t A345988 Module[{nn=60,ob},ob=Table[m(m+1),{m,nn}];Table[SelectFirst[ob,Mod[#,n]==0&],{n,nn}]] (* _Harvey P. Dale_, Jul 10 2024 *) %o A345988 (Python 3.8+) %o A345988 from itertools import combinations %o A345988 from math import prod %o A345988 from sympy import factorint %o A345988 from sympy.ntheory.modular import crt %o A345988 def A345988(n): %o A345988 if n == 1: %o A345988 return 2 %o A345988 plist = tuple(p**q for p, q in factorint(n).items()) %o A345988 return n*(n-1) if len(plist) == 1 else (s:= int(min(min(crt((m, n//m), (0, -1))[0], crt((n//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l)))))*(s+1) # _Chai Wah Wu_, May 31 2022 %Y A345988 Cf. A002378, A344005. %K A345988 nonn %O A345988 1,1 %A A345988 _N. J. A. Sloane_, Jul 13 2021