cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346000 Lexicographically earliest sequence of nonnegative integers such that two distinct terms differ by at least 4 decimal digits.

This page as a plain text file.
%I A346000 #19 Jul 20 2021 15:35:15
%S A346000 0,1111,2222,3333,4444,5555,6666,7777,8888,9999,10123,11032,12301,
%T A346000 13210,14567,15476,16745,17654,20231,21320,22013,23102,24675,25764,
%U A346000 26457,27546,30312,31203,32130,33021,34756,35647,36574,37465
%N A346000 Lexicographically earliest sequence of nonnegative integers such that two distinct terms differ by at least 4 decimal digits.
%C A346000 This is the distance 4 lexicode over the decimal alphabet.
%H A346000 J. H. Conway, <a href="https://doi.org/10.1016/0012-365X(90)90008-6">Integral lexicographic codes</a>, Discrete Mathematics 83.2-3 (1990): 219-235.
%H A346000 J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1109/TIT.1986.1057187">Lexicographic codes: error-correcting codes from game theory</a>, IEEE Transactions on Information Theory, 32:337-348, 1986.
%p A346000 # Hamming distance in base b
%p A346000 Hammdist:=proc(m,n,b) local t1,t2,L1,L2,L,d,i;
%p A346000 t1:=convert(m,base,b); L1:=nops(t1);
%p A346000 t2:=convert(n,base,b); L2:=nops(t2); L:=L1;
%p A346000 if L2<L1 then for i from 1 to L1-L2 do t2:=[op(t2),0]; od;
%p A346000 elif L1<L2 then for i from 1 to L2-L1 do t1:=[op(t1),0]; od; L:=L2;
%p A346000 fi;
%p A346000 d:=0;
%p A346000 for i from 1 to L do if t1[i]<>t2[i] then d:=d+1; fi; od;
%p A346000 d; end;
%p A346000 # Build lexicode with min distance D in base b, search up to M
%p A346000 # C = size of code found, tooc = 1 means too close to code
%p A346000 unprotect(D);
%p A346000 lexicode := proc(D,b,M) local cod,v,i,tooc,C;
%p A346000 cod:=[0]; C:=1;
%p A346000 # can we add v ?
%p A346000 for v from 0 to M do
%p A346000    tooc:=-1;
%p A346000    for i from 1 to C do
%p A346000    if Hammdist(v,cod[i],b)<D then tooc:=1; break; fi;
%p A346000                      od:
%p A346000 if tooc = -1 then C:=C+1; cod:=[op(cod),v]; fi;
%p A346000 od:
%p A346000 cod;
%p A346000 end;
%Y A346000 Lexicodes of minimal distance 1,2,3,... over alphabets of size 2: A001477, A001969, A075926, A075928, A075931, A075934, ...; size 3: A001477, A346002, A346003; size 10: A001477, A343444, A333568, A346000, A346001.
%K A346000 nonn,base
%O A346000 1,2
%A A346000 _N. J. A. Sloane_, Jul 20 2021