A346003 Distance 3 lexicode over the alphabet {0,1,2}, with the codewords written in base 10.
0, 13, 26, 32, 42, 46, 61, 65, 75, 325, 336, 357, 362, 373, 383, 394, 396, 413, 584, 651, 658, 677, 699, 716, 812, 825, 832, 840, 847, 863, 878, 898, 909, 975, 982, 1001, 1023, 1043, 1048, 1148, 1165, 1170, 1194, 1208, 1223, 1254, 1269, 1330, 1341, 1421, 1452
Offset: 1
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..6000
- J. H. Conway, Integral lexicographic codes, Discrete Mathematics 83.2-3 (1990): 219-235.
- J. H. Conway and N. J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Transactions on Information Theory, 32:337-348, 1986.
Crossrefs
Programs
-
Maple
(See A346000).
-
Python
def t(n): d = [] while n: d.append(n%3) n //= 3 return d def dif(n1, n2): return sum(d1 != d2 for d1, d2 in zip(n1 + [0] * (len(n2)-len(n1)), n2)) a = [0] for n in range(2000): if all(dif(t(n1), t(n)) >= 3 for n1 in a): a.append(n) print(a) # Andrey Zabolotskiy, Sep 30 2021
Extensions
Terms a(36) and beyond from Andrey Zabolotskiy, Sep 30 2021
Comments