A346006 Successive numbers arising from the Moessner construction of the sequence of fourth powers on page 64 of Conway-Guy's "Book of Numbers".
0, 1, 4, 6, 4, 16, 32, 24, 8, 81, 108, 54, 12, 256, 256, 96, 16, 625, 500, 150, 20, 1296, 864, 216, 24, 2401, 1372, 294, 28, 4096, 2048, 384, 32, 6561, 2916, 486, 36, 10000, 4000, 600, 40, 14641, 5324, 726, 44, 20736, 6912, 864, 48, 28561, 8788, 1014, 52, 38416, 10976, 1176, 56, 50625, 13500, 1350, 60
Offset: 0
Keywords
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996. Sequence can be obtained by reading the successive circled numbers in the second display on page 64.
Programs
-
Maple
f:=proc(n,b) local i; for i from 0 to b-1 do if ((n+i) mod b) = 0 then return(binomial(b,i+1)*((n+i)/b)^(i+1)); fi; od; end; [seq(f(n,3),n=0..60)];
-
Python
from sympy import binomial def A346006(n): i = (4-n)%4 return binomial(4,i+1)*((n+i)//4)**(i+1) # Chai Wah Wu, Jul 25 2021
Formula
Let b=4. If n == -i (mod b) for 0 <= i < b, then a(n) = binomial(b,i+1)*((n+i)/b)^(i+1).
Comments