A346007 Let b=5. If n == -i (mod b) for 0 <= i < b, then a(n) = binomial(b,i+1)*((n+i)/b)^(i+1).
0, 1, 5, 10, 10, 5, 32, 80, 80, 40, 10, 243, 405, 270, 90, 15, 1024, 1280, 640, 160, 20, 3125, 3125, 1250, 250, 25, 7776, 6480, 2160, 360, 30, 16807, 12005, 3430, 490, 35, 32768, 20480, 5120, 640, 40, 59049, 32805, 7290, 810, 45, 100000, 50000, 10000, 1000, 50
Offset: 0
Keywords
References
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996. See pp. 63-64.
Programs
-
Maple
f:=proc(n,b) local i; for i from 0 to b-1 do if ((n+i) mod b) = 0 then return(binomial(b,i+1)*((n+i)/b)^(i+1)); fi; od; end; [seq(f(n,5),n=0..80)];
-
Python
from sympy import binomial def A346007(n): i = (5-n)%5 return binomial(5,i+1)*((n+i)//5)**(i+1) # Chai Wah Wu, Jul 25 2021
Comments