This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346008 #34 Oct 27 2021 14:33:01 %S A346008 1,128,3359232,126806761930752,17832200896512000000000000, %T A346008 20122639448358307421277388800000000000000, %U A346008 346671850578027965617950152200042758191185920000000000000000,158635147791426908154211087484339310324630213259159597497553256448000000000000000000,3135383389315524601627656266493367412334920325664589642523187933340624422000766361791574835200000000000000000000 %N A346008 Order of the full automorphism group of an n^2 X n^2 Sudoku puzzle. %C A346008 a(n) is the order of the automorphism group of the n^2 X n^2 Sudoku graph (see A182866). %F A346008 a(n) = 2*(n!)^(2n+2) for n > 1. %e A346008 For n=2, a(2) = 128 is the number of symmetries of a Shidoku puzzle. %e A346008 For n=3, a(3) = 3359232 is the number of symmetries of standard 9 X 9 Sudoku puzzle. %t A346008 Join[{1},Table[2*n!^(2*n+2),{n,2,9}]] (* _Stefano Spezia_, Jul 27 2021 *) %o A346008 (SageMath) %o A346008 M = matrix(n^4,n^4) %o A346008 for i in [0..n^4-1]: %o A346008 for j in [0..n^4-1]: %o A346008 if i!=j: %o A346008 if i%n^2==j%n^2: %o A346008 M[i,j]=1 %o A346008 if floor(i/n^2)==floor(j/n^2): %o A346008 M[i,j]=1 %o A346008 D = Graph(M, format='adjacency_matrix') %o A346008 for col in [0..n-1]: %o A346008 for row in [0..n-1]: %o A346008 tl = n*col + n^3*row %o A346008 s = [] %o A346008 for i in [0..n-1]: %o A346008 for j in [0..n-1]: %o A346008 s.append(tl + i + n^2*j) %o A346008 D.add_clique(s) %o A346008 print(D.automorphism_group().order()) %Y A346008 Cf. A159299. %K A346008 nonn %O A346008 1,2 %A A346008 _Carl-Fredrik Nyberg Brodda_, _Shay Jordan_, Jul 27 2021