cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346009 a(n) is the numerator of the average number of distinct prime factors of the divisors of n.

This page as a plain text file.
%I A346009 #14 Jul 14 2025 15:15:13
%S A346009 0,1,1,2,1,1,1,3,2,1,1,7,1,1,1,4,1,7,1,7,1,1,1,5,2,1,3,7,1,3,1,5,1,1,
%T A346009 1,4,1,1,1,5,1,3,1,7,7,1,1,13,2,7,1,7,1,5,1,5,1,1,1,5,1,1,7,6,1,3,1,7,
%U A346009 1,3,1,17,1,1,7,7,1,3,1,13,4,1,1,5,1,1
%N A346009 a(n) is the numerator of the average number of distinct prime factors of the divisors of n.
%D A346009 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 3.3.21 on page 100.
%H A346009 Amiram Eldar, <a href="/A346009/b346009.txt">Table of n, a(n) for n = 1..10000</a>
%H A346009 R. L. Duncan, <a href="https://www.jstor.org/stable/2311587">Note on the divisors of a number</a>, The American Mathematical Monthly, Vol. 68, No. 4 (1961), pp. 356-359.
%H A346009 Sébastien Gaboury, <a href="http://hdl.handle.net/20.500.11794/18899">Sur les convolutions de fonctions arithmétiques</a>, M.Sc. thesis, Laval University, Quebec, 2007.
%F A346009 Let f(n) = a(n)/A346010(n) be the sequence of fractions. Then:
%F A346009 f(n) = A062799(n)/A000005(n).
%F A346009 f(n) = (Sum_{p prime, p|n} d(n/p))/d(n), where d(n) is the number of divisors of n (A000005).
%F A346009 f(n) depends only on the prime signature of n: If n = Product_{i} p_i^e_i, then a(n) = Sum_{i} e_i/(e_i + 1).
%F A346009 f(p) = 1/2 for prime p.
%F A346009 f(n) = 1 for squarefree semiprimes n (A006881).
%F A346009 Sum_{k=1..n} f(k) ~ (1/2) * A013939(n) + C*n + O(n/log(n)) ~ n*log(log(n))/2 + (B/2 + C)*n + O(n/log(n)), where B is Mertens's constant (A077761) and C = A346011 (Duncan, 1961).
%e A346009 The fractions begin with 0, 1/2, 1/2, 2/3, 1/2, 1, 1/2, 3/4, 2/3, 1, 1/2, 7/6, ...
%e A346009 f(2) = 1/2 since 2 has 2 divisors, 1 and 2, and (omega(1) + omega(2))/2 = (0 + 1)/2 = 1/2.
%e A346009 f(6) = 1 since 6 has 4 divisors, 1, 2, 3 and 6 and (omega(1) + omega(2) + omega(3) + omega(6))/4 = (0 + 1 + 1 + 2)/4 = 1.
%t A346009 a[n_] := Numerator[DivisorSum[n, PrimeNu[#] &]/DivisorSigma[0, n]]; Array[a, 100]
%t A346009 (* or *)
%t A346009 f[p_, e_] := e/(e+1); a[1] = 0; a[n_] := Numerator[Plus @@ f @@@ FactorInteger[n]]; Array[a, 100]
%Y A346009 Cf. A000005, A001221, A006881, A013939, A062799, A077761, A346010 (denominators), A346011.
%K A346009 nonn,frac
%O A346009 1,4
%A A346009 _Amiram Eldar_, Jul 01 2021