A346023 Primes that are the first in a run of exactly 3 emirps.
71, 953, 1021, 1097, 1381, 1499, 1583, 1723, 3011, 3083, 3271, 3343, 3463, 7673, 7949, 9209, 9479, 10453, 10987, 11149, 12289, 12743, 13499, 13751, 14057, 14087, 14549, 15289, 15649, 15731, 16103, 16193, 16567, 17033, 17203, 17669, 17737, 17903, 18899, 19793
Offset: 1
Examples
a(1) = 71 because of the five consecutive primes 67, 71, 73, 79, 83 all except 67 and 83 are emirps and this is the first such occurrence.
Crossrefs
Programs
-
Mathematica
Select[Prime@Range@10000,Boole[PrimeQ@#&&!PalindromeQ@#&/@(IntegerReverse/@NextPrime[#,Range[-1,3]])]=={0,1,1,1,0}&] (* Giorgos Kalogeropoulos, Jul 04 2021 *)
-
Python
from sympy import isprime, primerange def isemirp(p): s = str(p); return s != s[::-1] and isprime(int(s[::-1])) def aupto(limit): alst, pvec, evec = [], [2, 3, 5, 7, 11], [0, 0, 0, 0, 0] for p in primerange(13, limit+1): if evec == [0, 1, 1, 1, 0]: alst.append(pvec[1]) pvec = pvec[1:] + [p]; evec = evec[1:] + [isemirp(p)] return alst print(aupto(20000)) # Michael S. Branicky, Jul 04 2021
Comments