A346025 Primes that are the first in a run of exactly 5 emirps.
3371, 9769, 11699, 11953, 15493, 34549, 72307, 72547, 105653, 106391, 109849, 129587, 139387, 144407, 169067, 170759, 178333, 193261, 193877, 316073, 324031, 324893, 325163, 333923, 339671, 375787, 381859, 389287, 701383, 701593, 712289, 722633, 744377, 777349
Offset: 1
Examples
a(1) = 3371 because of the seven consecutive primes 3361, 3371, 3373, 3389, 3391, 3407, 3413 all except 3361 and 3413 are emirps and this is the first such occurrence.
Crossrefs
Programs
-
Mathematica
Select[Prime@Range@20000,Boole[PrimeQ@#&&!PalindromeQ@#&/@(IntegerReverse/@NextPrime[#,Range[-1,5]])]=={0,1,1,1,1,1,0}&] (* Giorgos Kalogeropoulos, Jul 04 2021 *)
-
Python
from sympy import isprime, primerange def isemirp(p): s = str(p); return s != s[::-1] and isprime(int(s[::-1])) def aupto(limit): alst, pvec, evec = [], [2, 3, 5, 7, 11, 13, 17], [0, 0, 0, 0, 0, 0, 0] for p in primerange(19, limit+1): if evec == [0, 1, 1, 1, 1, 1, 0]: alst.append(pvec[1]) pvec = pvec[1:] + [p]; evec = evec[1:] + [isemirp(p)] return alst print(aupto(780000)) # Michael S. Branicky, Jul 04 2021
Comments