cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346040 a(n) is 1w' converted to decimal, where the binary word w' is the result of applying Post's tag system {00,1101} to the binary word w, where 1w is n converted to binary (the leftmost 1 acts as a delimiter).

This page as a plain text file.
%I A346040 #31 Aug 04 2021 03:18:25
%S A346040 1,1,5,2,2,13,13,4,4,4,4,29,29,29,29,8,12,8,12,8,12,8,12,45,61,45,61,
%T A346040 45,61,45,61,16,20,24,28,16,20,24,28,16,20,24,28,16,20,24,28,77,93,
%U A346040 109,125,77,93,109,125,77,93,109,125,77,93,109,125,32,36,40
%N A346040 a(n) is 1w' converted to decimal, where the binary word w' is the result of applying Post's tag system {00,1101} to the binary word w, where 1w is n converted to binary (the leftmost 1 acts as a delimiter).
%C A346040 Post's tag system maps a word w over {0,1} to w', where if w begins with 0, w' is obtained by appending 00 to w and deleting the first three letters, or if w begins with 1, w' is obtained by appending 1101 to w and deleting the first three letters.
%C A346040 The empty word is included in the count.
%C A346040 It is an important open question to decide whether there is any word whose orbit grows without limit.
%C A346040 Note that there is a one-to-one correspondence between positive integers and binary words (including the empty word), given by n (decimal) = 1w (binary) -> w.
%C A346040 With alphabet {0,1} replaced by {1,2}, the above correspondence is given by A007931, and a step of the tag system by A289673.
%C A346040 The present sequence allows for looking into Post's tag system "numerically", instead of "combinatorially".
%H A346040 Carlos Gómez-Ambrosi, <a href="/A346040/b346040.txt">Table of n, a(n) for n = 1..10000</a>
%H A346040 Liesbeth De Mol, <a href="http://hdl.handle.net/1854/LU-8515634">Tracing unsolvability: a mathematical, historical and philosophical analysis with a special focus on tag systems</a>, Ph.D. Thesis, University of Ghent, 2007. See <a href="https://www.clps.ugent.be/sites/default/files/publications/dissertation.pdf">also</a>.
%H A346040 Emil L. Post, <a href="https://www.jstor.org/stable/2371809">Formal reductions of the general combinatorial decision problem</a>, Amer. J. Math. 65 (1943), 197-215. See <a href="http://www.lib.ysu.am/articles_art/63062f3ed126193beb426becc0fbbe33.pdf">also</a>. Post's tag system {00,1101} appears on page 204.
%F A346040 a(n) = delete(append(n)), where:
%F A346040 append(1) = 1;
%F A346040 append(n) = 2^(2 + 2 * floor((n - 2^k)/2^(k-1))) * n + 13 * floor((n - 2^k)/2^(k-1)) if n > 1, where k = floor(log_2(n));
%F A346040 delete(n) = n + 2^t * (1 - floor(n/2^t)), where t = max(floor(log_2(n))-3,0).
%F A346040 In the expression for append(n), floor((n - 2^k)/2^(k-1)) is the second-highest bit in the binary expansion of n, which is A079944, with offset 2.
%e A346040 n = 22 (decimal) = 10110 (binary) = 1w ->
%e A346040                 w = 0110 ->
%e A346040                     011000 ->
%e A346040                   w' = 000 ->
%e A346040                 1w' = 1000 (binary) = 8 (decimal) = a(22)
%e A346040 n = 25 (decimal) = 11001 (binary) = 1w ->
%e A346040                 w = 1001 ->
%e A346040                     10011101 ->
%e A346040                   w' = 11101 ->
%e A346040                 1w' = 111101 (binary) = 61 (decimal) = a(25)
%o A346040 (Sage)
%o A346040 def a(n):
%o A346040     if n == 1:
%o A346040         return 1
%o A346040     else:
%o A346040         s = n.digits(2)
%o A346040         s.reverse()
%o A346040         if s[1] == 0:
%o A346040             t = s + [0,0]
%o A346040         else:
%o A346040             t = s + [1,1,0,1]
%o A346040         del(t[1])
%o A346040         del(t[1])
%o A346040         del(t[1])
%o A346040         return sum(t[k]*2^(len(t)-1-k) for k in srange(0,len(t)))
%o A346040 (MATLAB)
%o A346040 function m = A346040(n)
%o A346040 if n == 1
%o A346040     m = 1;
%o A346040 else
%o A346040     s = dec2bin(n);
%o A346040     if strcmp(s(2),'0')
%o A346040         t = [s '00'];
%o A346040     else
%o A346040         t = [s '1101'];
%o A346040     end
%o A346040     t(2) = [];
%o A346040     t(2) = [];
%o A346040     t(2) = [];
%o A346040     m = bin2dec(t);
%o A346040 end
%o A346040 end
%o A346040 (PARI) a(n) = if(n==1,1, my(k=logint(n,2)); if(bittest(n,k-1), n=n<<4+13;k++, n<<=2;k--); bitand(n,bitneg(0,k)) + 1<<k); \\ _Kevin Ryde_, Jul 02 2021
%Y A346040 Cf. A289673 (alphabet 1,2).
%Y A346040 Cf. A284116, A284119, A284121, A289670, A289671, A289672, A289674, A289675, A291792, A291793, A291794, A291795, A291796, A291798, A291799, A291800, A291801, A291802, A337537.
%K A346040 nonn,base,easy
%O A346040 1,3
%A A346040 _Carlos Gómez-Ambrosi_, Jul 02 2021