This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346054 #33 Dec 01 2022 08:57:47 %S A346054 1,0,3,8,13,52,119,308,873,2184,5867,15552,40581,107836,283871,748076, %T A346054 1976545,5208784,13743315,36260088,95627773,252289476,665499975, %U A346054 1755466916,4630903129,12215645848,32223689915,85003275440,224228961909,591494654412,1560303157679 %N A346054 Number of ways to tile a 3 X n strip with dominoes and L-shaped 5-minoes. %H A346054 G. C. Greubel, <a href="/A346054/b346054.txt">Table of n, a(n) for n = 0..1000</a> %H A346054 Greg Dresden and Michael Tulskikh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Dresden2/dresden9.html">Tilings of 2 X n boards with dominos and L-shaped trominos</a>, Journal of Integer Sequences 24 (2021), article 21.4.5. %H A346054 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,5,-4). %F A346054 a(n) = a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4). %F A346054 G.f.: (1 - x)/(1 - x - 3*x^2 - 5*x^3 + 4*x^4). %e A346054 Here are two such tilings for a 3 X 3 strip; each has four rotations thus demonstrating that a(3)=8. %e A346054 ._____. ._____. %e A346054 | | | | | |___| %e A346054 | |_|_| | |___| %e A346054 |_____| |_____| %e A346054 For a 3 X 4 strip, here are three of the possible a(4)=13 tilings. %e A346054 ._______. ._______. ._______. %e A346054 | |___ | | ___| | |___|___| %e A346054 | |___| | | |___| | | |___| | %e A346054 |_____|_| |_|_____| |_|___|_| %e A346054 For a 3 X 5 strip, here are three of the possible a(5)=52 tilings. %e A346054 ._________. ._________. ._________. %e A346054 | | |___| | | ___|___| | |___|___| %e A346054 | |_|___|_| | | |___| | | |___|___| %e A346054 |_____|___| |_|_|___|_| |_____|___| %t A346054 LinearRecurrence[{1, 3, 5, -4}, {1, 0, 3, 8}, 50]; %o A346054 (Magma) I:=[1,0,3,8]; [n le 4 select I[n] else Self(n-1) +3*Self(n-2) +5*Self(n-3) -4*Self(n-4): n in [1..50]]; // _G. C. Greubel_, Dec 01 2022 %o A346054 (SageMath) %o A346054 @CachedFunction %o A346054 def a(n): # a = A346054 %o A346054 if (n<4): return (1,0,3,8)[n] %o A346054 else: return a(n-1) + 3*a(n-2) + 5*a(n-3) - 4*a(n-4) %o A346054 [a(n) for n in range(51)] # _G. C. Greubel_, Dec 01 2022 %Y A346054 Cf. A052980. %K A346054 nonn,easy %O A346054 0,3 %A A346054 _Greg Dresden_ and _Ziyao Geng_, Jul 02 2021 %E A346054 Corrected by _Greg Dresden_, Sep 04 2021