cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346059 G.f. A(x) satisfies: A(x) = 1 - x * A(x/(1 - x)) / (1 - x)^4.

This page as a plain text file.
%I A346059 #9 Feb 21 2022 09:01:29
%S A346059 1,-1,-3,-2,15,62,56,-566,-3318,-6241,33022,330939,1211873,-1330691,
%T A346059 -47459905,-310788796,-675462411,7151217040,93213242926,515144576280,
%U A346059 122725585740,-27551616750331,-296570472858772,-1477869678576483,3416889475636695,146832017085068163,1522825949942199537
%N A346059 G.f. A(x) satisfies: A(x) = 1 - x * A(x/(1 - x)) / (1 - x)^4.
%H A346059 Seiichi Manyama, <a href="/A346059/b346059.txt">Table of n, a(n) for n = 0..592</a>
%F A346059 a(n+1) = -Sum_{k=0..n} binomial(n+3,k+3) * a(k).
%t A346059 nmax = 26; A[_] = 0; Do[A[x_] = 1 - x A[x/(1 - x)]/(1 - x)^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A346059 a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n + 2, k + 3] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 26}]
%Y A346059 Cf. A000587, A014619, A045499, A346053, A346060.
%K A346059 sign
%O A346059 0,3
%A A346059 _Ilya Gutkovskiy_, Jul 03 2021