This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346063 #29 Aug 08 2021 11:27:39 %S A346063 2,1,2,2,4,3,1,5,1,6,4,3,6,4,7,14,6,10,7,37,23,25,28,18,21,22,67,24,9, %T A346063 46,11,19,62,12,40,24,2,27,6,91,11,31,20,1,36,203,69,25,2,80,16,48, %U A346063 155,18,1,326,7,20,109,365,8,39,9,240,438,2,16,154,10,17 %N A346063 a(n) = primepi(A039634(prime(n)^2-1)). %C A346063 This sequence looks at the effect on p^2 - 1 of A039634 with the primes represented by their indices. It seems that primes obtained by iterating the map A039634 on p^2 - 1 never fall into a cycle before reaching 2. Conjecture: Iterating the map k -> a(k) eventually reaches 1. For example, 1 -> 2 -> 1; 5 -> 4 -> 2 -> 1; and 27 -> 67 -> 16 -> 14 -> 4 -> 2 -> 1. %C A346063 If the conjecture holds, then A339991(n) != -1 and A340419 is a finite sequence. %H A346063 Ya-Ping Lu, <a href="/A346063/a346063.pdf">Plot of a(n) vs n for n up to 10000</a> %F A346063 a(n) = A000720(A039634(A000040(n)^2-1)). - _Pontus von Brömssen_, Jul 03 2021 %t A346063 Array[PrimePi@ FixedPoint[If[EvenQ[#] && # > 2, #/2, If[PrimeQ[#] || (# === 1), #, (# - 1)/2]] &, Prime[#]^2 - 1] &, 70] (* _Michael De Vlieger_, Jul 06 2021 *) %o A346063 (Python) %o A346063 from sympy import prime, isprime, primepi %o A346063 def a(n): %o A346063 p = prime(n); m = p*p - 1 %o A346063 while not isprime(m): m = m//2 %o A346063 return primepi(m) %o A346063 for n in range(1, 71): print(a(n)) %Y A346063 Cf. A000040, A000720, A039634, A339991, A340008, A340418, A340419. %K A346063 nonn %O A346063 1,1 %A A346063 _Ya-Ping Lu_, Jul 03 2021