This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346064 #22 Aug 17 2021 19:24:45 %S A346064 21,17,20,15,21,20,21,16,21,17,23,18,22,17,23,22,23,17,23,19,23,19,22, %T A346064 16,23,22,23,18,23,18,22,18,21,16,22,21,22,17,22,17,23,18,22,17,23,22, %U A346064 23,17,23,19,23,19,22,16,23,22,23,18,23,18,22,18,21,16,22 %N A346064 Number of primes that may be generated by changing any two digits of n simultaneously. %C A346064 Indices of low records are given by A345289. By heuristic considerations it is conjectured that a(n) > 0 for all n >= 10. %H A346064 M. Filaseta, M. Kozek, Ch. Nicol and J. Selfridge, <a href="https://people.math.sc.edu/filaseta/papers/FKNSpaper0808.pdf">Composites that Remain Composite After Changing a Digit</a>, J. Comb. Number Theory, Vol. 2, No. 1 (2010), pp. 25-36. %e A346064 Changing two digits of the number 17 simultaneously yields the primes 02,03,05,23,29,31,41,43,53,59,61,71,73,79,83,89, so a(17) = 16. %p A346064 A346064 := proc(n) %p A346064 local a, d, e, r, s, l, N, NN, nn, i; %p A346064 a := 0; %p A346064 N := convert(n, base, 10); %p A346064 l := nops(N); %p A346064 for d to l - 1 do %p A346064 for e from d + 1 to l do %p A346064 for r from 0 to 9 do %p A346064 for s from 0 to 9 do %p A346064 if r <> op(d, N) and s <> op(e, N) then %p A346064 NN := subsop(d = r, e = s, N); %p A346064 nn := add(op(i, NN)*10^(i - 1), i = 1 .. l); %p A346064 if isprime(nn) then a := a + 1; end if; %p A346064 end if; %p A346064 end do; %p A346064 end do; %p A346064 end do; %p A346064 end do; %p A346064 a; %p A346064 end proc: %t A346064 Table[Count[Flatten[FromDigits/@Tuples[ReplacePart[t=List/@IntegerDigits[n],{#->Complement[Range[0,9],t[[#]]],#2->Complement[Range[0,9],t[[#2]]]}]&@@#]&/@Subsets[Range@IntegerLength@n,{2}]],_?PrimeQ],{n,10,100}] (* _Giorgos Kalogeropoulos_, Jul 23 2021 *) %o A346064 (Python) %o A346064 from sympy import isprime %o A346064 from itertools import combinations, product %o A346064 def change2(s): %o A346064 for i, j in combinations(range(len(s)), 2): %o A346064 for c, d in product("0123456789", repeat=2): %o A346064 if c != s[i] and d != s[j]: %o A346064 yield s[:i] + c + s[i+1:j] + d + s[j+1:] %o A346064 def a(n): return sum(isprime(int(t)) for t in change2(str(n))) %o A346064 print([a(n) for n in range(10, 101)]) # _Michael S. Branicky_, Jul 23 2021 %Y A346064 Cf. A345289 (indices of record lows). %Y A346064 Cf. A209252 (changing one digit). %K A346064 nonn,base %O A346064 10,1 %A A346064 _Franz Vrabec_, Jul 03 2021