cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346068 Numbers that are the product of distinct primes with prime subscripts raised to prime powers.

This page as a plain text file.
%I A346068 #34 Jul 31 2021 05:15:23
%S A346068 1,9,25,27,121,125,225,243,289,675,961,1089,1125,1331,1681,2187,2601,
%T A346068 3025,3125,3267,3375,3481,4489,4913,6075,6889,7225,7803,8649,11881,
%U A346068 11979,15125,15129,16129,24025,24649,25947,27225,28125,29403,29791,30375,31329,32041,33275,34969
%N A346068 Numbers that are the product of distinct primes with prime subscripts raised to prime powers.
%H A346068 Amiram Eldar, <a href="/A346068/b346068.txt">Table of n, a(n) for n = 1..10000</a>
%F A346068 Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + Sum_{q prime} 1/p^q) = 1.2271874... - _Amiram Eldar_, Jul 31 2021
%e A346068 675 = 3^3 * 5^2 = prime(prime(1))^prime(2) * prime(prime(2))^prime(1), therefore 675 is a term.
%t A346068 Join[{1}, Select[Range[35000], AllTrue[Join[PrimePi[(t = Transpose @ FactorInteger[#])[[1]]], t[[2]]], PrimeQ] &]] (* _Amiram Eldar_, Jul 30 2021 *)
%o A346068 (Python)
%o A346068 from sympy import factorint, isprime, primepi
%o A346068 def ok(n):
%o A346068     f = factorint(n)
%o A346068     if not all(isprime(e) for e in f.values()): return False
%o A346068     return all(isprime(primepi(p)) for p in f)
%o A346068 print(list(filter(ok, range(35000)))) # _Michael S. Branicky_, Jul 30 2021
%Y A346068 Intersection of A056166 and A076610.
%Y A346068 Cf. A006450, A302590, A302596, A321874.
%K A346068 nonn
%O A346068 1,2
%A A346068 _Ilya Gutkovskiy_, Jul 30 2021