A346070 Symbolic code for the corner turns in the Lévy dragon curve.
0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0
Offset: 1
Examples
The first 15 terms correspond to iteration L(4) of the Levy dragon curve. These terms are 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0. The initial direction of the curve is 4*45=180 degrees (due west). The 15 terms indicate that the curve follows the pattern shown below. -- -- -- -- | || | -- -- | | | | -- * -- start
References
- Paul Lévy, "Plane or space curves and surfaces consisting of parts similar to the whole," in Classics on Fractals, Gerald A. Edgar, Editor, Addison-Wesley, 181-239.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..16384 (terms 1..4095 from Larry Riddle)
- Paul Lévy, Les courbes planes ou gauches et les surfaces composées de parties semblables au tout, Journal de l'École Polytechnique, July 1938 pages 227-247, and continued October 1938 pages 249-292, curve C.
- Larry Riddle, Representing the Levy Dragon Curve Symbolically
- Larry Riddle, First 31 terms, where R=0, S=1, L=2, and B=3.
- Micah D. Tillman, How Prime Factors Form Fractals, arXiv:2502.15743 [math.GM], 2025.
- Index entries for sequences that are fixed points of mappings
Programs
-
Mathematica
Mod[IntegerExponent[Range[100], 2], 4] (* Paolo Xausa, Feb 25 2025 *)
-
Python
def A346070(n): return (~n & n-1).bit_length() & 3 # Chai Wah Wu, Jul 01 2022
Comments