This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346071 #72 Oct 05 2021 22:43:34 %S A346071 6,18,54,87,108,174,174,324,324,324,492,492,492,984,984,1296,1296, %T A346071 1296,1440,1440,2592,2592,2592,2592,3960,3960,3960,3960,4320,4320, %U A346071 4320,5760,5940,5940,5940,5940,5940,5940,8640,9900,9900,9900,11880,11880,11880,11880,11880 %N A346071 a(n) is the smallest number m such that m^3 = x^3 + y^3 + z^3, x > y > z > 0, has at least n different solutions. %C A346071 a(n) is the smallest number for which there are at least n sets of positive integers (b_i, c_i, d_i) i=1..n which satisfy the equation a(n)^3 = b_i^3 + c_i^3 + d_i^3. %C A346071 This sequence is related to Euler's sum of powers conjecture. In particular to the case k=3, a(n) is the smallest number that has at least n different solutions to the equation. %C A346071 The sequences of numbers whose cubes can be expressed as the sum of 3 positive cubes in at least n ways for n = 1, 2, 3, ... form a family of related sequences. This sequence is the sequence of first terms in that family of sequences. %C A346071 The first of this family is A023042. %H A346071 Wikipedia, <a href="https://en.wikipedia.org/wiki/Euler%27s_sum_of_powers_conjecture">Euler's sum of powers conjecture</a> %e A346071 a(1) = 6 because 6^3 = 5^3 + 4^3 + 3^3; 6 = a(1) = A023042(1). %e A346071 a(2) = 18 because 18^3 = 15^3 + 12^3 + 9^3 = 16^3 + 12^3 + 2^3. %e A346071 a(3) = 54 because 54^3 = 45^3 + 36^3 + 27^3 = 48^3 + 36^3 + 6^3 = 53^3 + 19^3 + 12^3. %o A346071 (Python) %o A346071 import numpy as np %o A346071 def residual(a,b,c,d, exp=3): %o A346071 return a**exp-b**exp-c**exp-d**exp %o A346071 def test(max_n,k=3): %o A346071 ans=dict() %o A346071 for a in range(max_n): %o A346071 #print(a) %o A346071 for b in range(int(np.ceil((a**k/3)**(1/k))),a): %o A346071 n3=a**k-b**k %o A346071 for c in range(int(np.ceil((n3/2)**(1/k))),b): %o A346071 m3=n3-c**k %o A346071 if m3<0: %o A346071 break; %o A346071 l=int(np.ceil((m3)**(1/k))) %o A346071 options=[l,l-1] %o A346071 for d in options: %o A346071 res=residual(a,b,c,d, exp=k) %o A346071 if res==0: %o A346071 if a in ans.keys(): %o A346071 ans[a].append((a,b,c,d)) %o A346071 else: %o A346071 ans[a]=[(a,b,c,d)] %o A346071 #print("found:",(a,b,c,d)) %o A346071 break %o A346071 else: %o A346071 #print("tested: {0}, residual: {1}".format((a,b,c,d),res)) %o A346071 if res>0: %o A346071 break %o A346071 return ans %o A346071 def serie(N): %o A346071 result=test(N) %o A346071 results_by_number_of_answers=[] %o A346071 results_by_number_of_answers.append(result) %o A346071 temp=dict() %o A346071 for k in result.keys(): %o A346071 if len(result[k])>=2: %o A346071 temp[k]=result[k] %o A346071 results_by_number_of_answers.append(temp) %o A346071 i=3 %o A346071 while len(temp)>0: %o A346071 temp=dict() %o A346071 for k in results_by_number_of_answers[-1].keys(): %o A346071 if len(results_by_number_of_answers[-1][k])>=i: %o A346071 temp[k]=result[k] %o A346071 if len(temp)>0: %o A346071 results_by_number_of_answers.append(temp) %o A346071 i+=1 %o A346071 return [next(iter(a)) for a in results_by_number_of_answers] %o A346071 #Get the elements of the serie up until A_n>1000 %o A346071 A=serie(1000) %o A346071 print(A) %o A346071 (Python) %o A346071 from itertools import combinations %o A346071 from collections import Counter %o A346071 from sympy import integer_nthroot %o A346071 def icbrt(n): return integer_nthroot(n, 3)[0] %o A346071 def aupto(mmax): %o A346071 cbs = [i**3 for i in range(mmax+1)] %o A346071 cbsset = set(cbs) %o A346071 c = Counter(sum(c) for c in combinations(cbs, 3) if sum(c) in cbsset) %o A346071 nmax = max(c.values()) %o A346071 return [min(icbrt(s) for s in c if c[s] >= n) for n in range(1, nmax+1)] %o A346071 print(aupto(500)) # _Michael S. Branicky_, Sep 04 2021 %Y A346071 Cf. A023042, A025418, A346137, A316359. %K A346071 nonn,more %O A346071 1,1 %A A346071 _Sebastian Magee_, Jul 30 2021 %E A346071 a(16)-a(31) from _Jinyuan Wang_, Aug 02 2021 %E A346071 More terms from _David A. Corneth_, Sep 04 2021