cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346073 a(n) = 1 + Sum_{k=0..n-4} a(k) * a(n-k-4).

This page as a plain text file.
%I A346073 #21 Jan 22 2023 09:15:19
%S A346073 1,1,1,1,2,3,4,5,8,13,20,29,45,73,118,185,293,475,778,1263,2047,3345,
%T A346073 5512,9085,14957,24683,40918,67987,113016,188053,313608,524041,876657,
%U A346073 1467797,2460644,4130893,6942726,11678687,19663068,33139295,55904339,94384167,159470488
%N A346073 a(n) = 1 + Sum_{k=0..n-4} a(k) * a(n-k-4).
%H A346073 G. C. Greubel, <a href="/A346073/b346073.txt">Table of n, a(n) for n = 0..1000</a>
%F A346073 G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x^4 * A(x)^2.
%F A346073 a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * Catalan(k). - _Seiichi Manyama_, Jan 22 2023
%t A346073 a[n_] := a[n] = 1 + Sum[a[k] a[n - k - 4], {k, 0, n - 4}]; Table[a[n], {n, 0, 42}]
%t A346073 nmax = 42; A[_] = 0; Do[A[x_] = 1/(1 - x) + x^4 A[x]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%o A346073 (SageMath)
%o A346073 @CachedFunction
%o A346073 def a(n): # a = A346073
%o A346073     if (n<4): return 1
%o A346073     else: return 1 + sum(a(k)*a(n-k-4) for k in range(n-3))
%o A346073 [a(n) for n in range(51)] # _G. C. Greubel_, Nov 26 2022
%o A346073 (PARI) a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*k, k)/(k+1)); \\ _Seiichi Manyama_, Jan 22 2023
%Y A346073 Cf. A000108, A007317, A090344, A216604, A307971, A346074.
%K A346073 nonn
%O A346073 0,5
%A A346073 _Ilya Gutkovskiy_, Jul 04 2021