cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346078 G.f. A(x) satisfies: A(x) = 1 + x - x^2 * A(x/(1 - x)) / (1 - x).

This page as a plain text file.
%I A346078 #6 Jul 04 2021 22:13:08
%S A346078 1,1,-1,-2,-2,1,11,33,61,22,-418,-2363,-8375,-19715,-6325,263490,
%T A346078 1950298,9423505,33042827,59212141,-283826231,-3970508822,
%U A346078 -28167479326,-148668438363,-571280079455,-848399025239,11052089847863,148600718966518,1198795581209734
%N A346078 G.f. A(x) satisfies: A(x) = 1 + x - x^2 * A(x/(1 - x)) / (1 - x).
%F A346078 a(0) = a(1) = 1; a(n) = -Sum_{k=0..n-2} binomial(n-2,k) * a(k).
%t A346078 nmax = 28; A[_] = 0; Do[A[x_] = 1 + x - x^2 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A346078 a[0] = a[1] = 1; a[n_] := a[n] = -Sum[Binomial[n - 2, k] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]
%Y A346078 Cf. A000587, A007476, A336970, A346079.
%K A346078 sign
%O A346078 0,4
%A A346078 _Ilya Gutkovskiy_, Jul 04 2021