cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346079 G.f. A(x) satisfies: A(x) = x - x^2 * A(x/(1 - x)) / (1 - x).

This page as a plain text file.
%I A346079 #5 Jul 04 2021 22:13:15
%S A346079 0,1,0,-1,-2,-2,2,17,54,109,54,-796,-5000,-19499,-52252,-44617,577554,
%T A346079 5071906,27330978,108557573,263947354,-453137963,-11252508862,
%U A346079 -92193933208,-545809325184,-2441788385255,-6271647457176,22814756330975,492197181810550,4609129908957190
%N A346079 G.f. A(x) satisfies: A(x) = x - x^2 * A(x/(1 - x)) / (1 - x).
%F A346079 a(0) = 0, a(1) = 1; a(n) = -Sum_{k=0..n-2} binomial(n-2,k) * a(k).
%t A346079 nmax = 29; A[_] = 0; Do[A[x_] = x - x^2 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A346079 a[0] = 0; a[1] = 1; a[n_] := a[n] = -Sum[Binomial[n - 2, k] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 29}]
%Y A346079 Cf. A000587, A000995, A336970, A346078.
%K A346079 sign
%O A346079 0,5
%A A346079 _Ilya Gutkovskiy_, Jul 04 2021