This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346085 #23 Mar 01 2024 14:57:42 %S A346085 1,0,1,0,1,1,0,4,0,2,0,15,3,0,6,0,96,0,0,0,24,0,455,105,40,0,0,120,0, %T A346085 4320,0,0,0,0,0,720,0,29295,4725,0,1260,0,0,0,5040,0,300160,0,22400,0, %U A346085 0,0,0,0,40320,0,2663199,530145,0,0,72576,0,0,0,0,362880 %N A346085 Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A346085 Alois P. Heinz, <a href="/A346085/b346085.txt">Rows n = 0..140, flattened</a> %H A346085 Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a> %F A346085 Sum_{k=1..n} k * T(n,k) = A346066(n). %F A346085 Sum_{prime p <= n} T(n,p) = A359951(n). - _Alois P. Heinz_, Jan 20 2023 %e A346085 T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3). %e A346085 T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432). %e A346085 Triangle T(n,k) begins: %e A346085 1; %e A346085 0, 1; %e A346085 0, 1, 1; %e A346085 0, 4, 0, 2; %e A346085 0, 15, 3, 0, 6; %e A346085 0, 96, 0, 0, 0, 24; %e A346085 0, 455, 105, 40, 0, 0, 120; %e A346085 0, 4320, 0, 0, 0, 0, 0, 720; %e A346085 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040; %e A346085 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320; %e A346085 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880; %e A346085 ... %p A346085 b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)! %p A346085 *b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n)) %p A346085 end: %p A346085 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)): %p A346085 seq(T(n), n=0..12); %t A346085 b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!* %t A346085 b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]]; %t A346085 T[n_] := CoefficientList[b[n, 0], x]; %t A346085 Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Aug 30 2021, after _Alois P. Heinz_ *) %Y A346085 Columns k=0-1 give: A000007, A079128. %Y A346085 Even bisection of column k=2 gives A346086. %Y A346085 Row sums give A000142. %Y A346085 T(2n,n) gives A110468(n-1) for n >= 1. %Y A346085 Cf. A057731, A145877, A346066, A359951. %K A346085 nonn,tabl %O A346085 0,8 %A A346085 _Alois P. Heinz_, Jul 04 2021