This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346092 #5 Jul 09 2021 22:16:28 %S A346092 0,0,0,2,0,6,0,0,0,30,0,18,0,210,150,8,0,36,0,90,1050,2310,0,12,660, %T A346092 30030,0,630,0,120,0,0,11550,510510,3780,108,0,9699690,150150,0,0,0,0, %U A346092 6930,840,223092870,0,60,11550,1560,2552550,90090,0,216,36960,1470,48498450,6469693230,0,480,0,200560490130,5040,32,360360 %N A346092 a(n) = A276085(A328572(A108951(n))). %H A346092 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A346092 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A346092 a(n) = A276085(A344592(n)) = A276085(A328572(A108951(n))). %F A346092 a(n) = A108951(n) - A346093(n). %o A346092 (PARI) %o A346092 A002110(n) = prod(i=1,n,prime(i)); %o A346092 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) }; %o A346092 A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; %o A346092 A328572(n) = { my(m=1, p=2); while(n, if(n%p, m *= p^((n%p)-1)); n = n\p; p = nextprime(1+p)); (m); }; %o A346092 A346092(n) = A276085(A328572(A108951(n))); %Y A346092 Cf. A002110, A108951, A276085, A328572, A344592, A346093. %K A346092 nonn %O A346092 1,4 %A A346092 _Antti Karttunen_, Jul 09 2021