This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346093 #5 Jul 09 2021 22:16:37 %S A346093 1,2,6,2,30,6,210,8,36,30,2310,6,30030,210,30,8,510510,36,9699690,30, %T A346093 210,2310,223092870,36,240,30030,216,210,6469693230,240,200560490130, %U A346093 32,2310,510510,2520,36,7420738134810,9699690,30030,240,304250263527210,2520,13082761331670030,2310,240,223092870,614889782588491410,36,32550 %N A346093 a(n) = A276085(A328571(A108951(n))). %H A346093 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %H A346093 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A346093 a(n) = A276085(A346091(n)) = A276085(A328571(A108951(n))). %F A346093 a(n) = A108951(n) - A346092(n). %o A346093 (PARI) %o A346093 A002110(n) = prod(i=1,n,prime(i)); %o A346093 A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A002110(primepi(f[i, 1]))^f[i, 2]) }; %o A346093 A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; %o A346093 A328571(n) = { my(m=1, p=2); while(n, m *= (p^!!(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A346093 A346093(n) = A276085(A328571(A108951(n))); %Y A346093 Cf. A002110, A108951, A276085, A328571, A346091, A346092. %K A346093 nonn %O A346093 1,2 %A A346093 _Antti Karttunen_, Jul 09 2021