This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346100 #6 Jul 19 2021 01:26:11 %S A346100 0,1,1,2,1,1,1,0,0,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1, %T A346100 1,0,1,1,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,2,1,1,1,1,1,0,1,1,0,2,1,1,1,1, %U A346100 1,0,1,1,1,1,2,1,0,1,1,0,0,1,1,0,1,1,1,1,1,0,0,1,1,1,1,0,1,0,1,0,1,1,1,1,1,1,1,3 %N A346100 a(n) = A100995(gcd(n, A064989(A319626(A324886(n))))). %F A346100 a(n) = A100995(A346099(n)) = A100995(gcd(n, A064989(A319626(A324886(n))))). %o A346100 (PARI) %o A346100 A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); }; %o A346100 A319626(n) = (n / gcd(n, A064989(n))); %o A346100 A346100(n) = isprimepower(gcd(n, A064989(A319626(A324886(n))))); \\ Rest of program given in A324886. %Y A346100 Cf. A064989, A100995, A319626, A324886, A346087, A346095, A346096, A346098, A346099. %Y A346100 Cf. A346090 (positions of 0's). %K A346100 nonn %O A346100 1,4 %A A346100 _Antti Karttunen_, Jul 07 2021